
AD-Ali5i 856 ANALYSIS AND SPECIFICATION OF a UNIVE:RL DATA MRODEL 1/4
FOR DISTRIBUTED DATA .(U) AIR FORCE INSTOFTC
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI- A J JONES

UNCLASSIFIED 14 DEC 84 RFIT/GCS/ENG/84D-ii F/G 9/2 M

lmhhhmhhmmhml
mhhhhhhhmmnm

. 1

I.12.

imll
u112.2

~14.0 111 .8

111111=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

6

qw [I.

.Nei

REPRODUCED AT GOVERNMENT EXPENSE

UNI VV. AT OE

C;A
00

Lfl

~OF

ANALYSIS AND SPECIFICATION OF A

UNIVERSAL DATA MODEL

FOR DISTRIBUTED DATA BASE SYSTEMS

THESIS

Anthony 1. Jones

Second Lieutenant, USAF

AFIT/GCS/ENG/84D-11

8 __ _DTIC

i mcic~~ba.mOO ELECTEL.I nfor pubo ,Woc.w md -se ,

LA.dmumb uaoL j APR 01 M8

__ DEPARTMENT OF THE AIR FORCE S D
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

85 03 13 123

AFIT/GCS/ENG/84

ANALYSIS AND SPECIFICATION OF A

UNIVERSAL DATA MODEL

FOR DISTRIBUTED DATA BASE SYSTEMS

THESIS

Anthony J. Jones
Second Lieutenant, USAF

AFIT/GCS/ENG/84D-Ij

;1-48 ',IRA.

Approved for public release; distribution unlimited

* **- .. . ~ -

AFIT/GCS/ENG/84Dl1

ANALYSIS AND SPECIFICATION OF A UNIVERSAL DATA MODEL

FOR DISTRIBUTED DATA BASE SYSTEMS

THESIS

* Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree

of Master of Science in Computer Systems

Access lin For

DTiC 1- - b,

copy ~~&
ONSPECTE13_

Second Lieutenant, USAF ---
'0~~1 Dt I!; ''.7

fl t

March>984

1--"
Approved for public release; distribution unlimited

-**".

Preface

The purpose of this study was to analyze and define the

system requirements for a universal data base, and then

develop a universal data model to support a heterogeneous,

distributed data base environment (the universal data base).

The reason for attempting this development was the potential

benefit to be gained from being able to network data base

systems together.

I would like to acknowledge the great deal of support

and encouragement that I received from my thesis advisor, Dr.

Thomas Hartrum, and my reader, Dr. Henry Potoczny. I would

also like to acknowledge the support I received from my

friend 2Lt. Edward Jankus and my roomate John Pierce.

Anthony J. Jones

i ii

-I.* ." A t 2 Kt'.

t. --

I

I

4

.- . ..

6* - - - - - - --

List of Figures

Figure Page

1. Hierarchical model for medical data base .7

2. Network model for medical data base 9

3. Relational Model for Medical Data Base . . . 11

4. Integrated Views of Files.......... 12

5. Integrated Views of DBMS 13

6. Local Model Approach 30

7. Universal Model Approach 31

8. Bi-model Approach 31

9. Generic Approach.... 32

10. Generic-Local Approach 33

11. Onion-Layered Approach..............42

*12. Canonical Bubbles 54

13. Relation in Canonical Model 54

14. Combining Relationships 55

15. Reverse Associations 55

16. Optional Relationships 56

17. Multiple Relationships 56

Li. 18. Removing Multiple Relationships 56

19. Looping Relationships 56

20. Data-Item Group........ 57

*21. Data-Item Group in Bubble Format 57

22. Concatenated Keys 58

23. Intersecting Data...............61

24. Intersecting Attributes 61

iii

-W V -V -,W T~-

25. ERD Diagram for Medical Data Base 65

26. Multiple Relationships 66

27. Recursive Relationships 66

28. Attributes and Value Sets 67

29. Attribute of a Relationship Set 67

30. Existence Constraint 68

31. ID Dependency 69

32. Entity Relation 69

33. Relationship Relation 70

34. Example Relation 73

35. Relational Schema for Suppliers-and-Parts
Data Base 73

36. Suppliers-and-Parts Data Base 75

37. Sample Selection 76

38. Sample Projections 76

39. Sample Join between S and SP 76

40. Sample Division 77

41. DBTG Version of the Medical Data Base . . . 117

42. IMS Version of the Medical Data Base 125

iv

0ii

List of Tables

Table Page

I. Data Mapping Types 44

Ii. Summary of Criteria 89

III. Comparative Evaluation of Three
KUDM Candidates 89

IV. Sensitivity Analysis Results 90

pI

Abstract

A Universal Data Model (UDM) was developed for distrib-

uted Data Base Management Systems (DBMS). The primary goal

was to allow for the effective communication between hetero-

geneous, distributed DBMSs. A system requirements analysis

was first performed for a Universal Data Base (UDB). Three

models were selected and investigated as candidates for the

UDM: the Canonical, Entity-Relationship, and Relational.

Due to the complexities of the UDB, the user was restricted

to writing universal queries in a Universal Data Manipula-

tion Language (UDML) and was restricted to only one version

of each of the three prominent data models in use: IMS

(heirarchical), DBTG (network), and System R (relational).

Criteria were established and the relational model, augment-

ed, chosen as the UDM. Data model mapping issues were exam-

ined and included discussions on distributed information, re-

dundant data, the support of Third Normal Form, and target

model specific issues. Algorithms were developed to show the

mappings between the target models and the UDM. The Integra-

tion of these mappings were also addressed. The syntax of a

9! universal data definition language and data manipulation lan-

guage were described.

vi

97

Table of Contents

Page

Preface ii

List of Figures iii

List of Tables v

Abstract vi

I. Introduction I

Background 1
DBMS 2
Advantages and Disadvantages . 4
Distributed Environment 4
DBMS Models 6

Problem 13
Scope 14
Assumptions 14
Summary of Current Knowledge 15
Approach 16
Overview of Thesis 17

0- II. Requirements: The Environment, the User,
and the Language18

Politics 19
The Environment 20
The User's View 29
The Language 34

III. Approaches to Supporting a Multi-Model
System o . o 41

Compostite Approach 42
The Mapping Approach 43

Noncontructive Mappings 44

Constructive Mappings 45
Data Model Mapping 46
Operation Mapping 49

IV Universal Model Candidates 52

The Canonical Model 53
Bubble Charts 54
Canonical Synthesis 59
Canonical DML 62
Canonical Conclusion 63

vii

TO 7 - _ 7 -.... -7

The Entity-Relationship Model 63
ER Structure Glossary 64
ER Structures 64
ER Constraints 66
ERD Extension 68
ER DML 70
ER Conclusion 71

The Relational Model" . . ,.72
Relational Structure G1s;a;y . 73
Relational Operators 74

Relational integrity Constraints 77
Relational DML.. 78
Relational Conclusion 79

V. The Universal Model 80

The Universal Data Base Context . . . 80
Relational Model 80
Entity-Relationship Model . . 84
Canonical Model 85

Selection Criteria 86
Application of Criteria 88
The Universal Model 88
Sensitivity Analysis 90
Final Design Decisions 91

VI. The UDDL Mappings 93

DML Mapping Issues 93
Distributed Information 94
Redundant Data. 96
DBTG Set Selection 98

DDL Mapping Issues 99
The Question of

Third Normal Form 99
LDBMS Modification vs Using

Existing Data Bases 101
The Question of Nonunique Keys 102
Keys and the UDB 102
DBTG Membership Classes 102
Distributed Information 106
Redundant Data 108

Relational Constraints 114
IMS Constraints 114
DBTG Constraints 114
Data Definition Language Mappings 115

Mapping Algorithm Key.. 116
* Universal-Relational Mappings 117

Network DDL to Universal DDL . . 117
Universal DDL to Network DDL . . 122
IMS DDL to Universal DDL 125

Parent Key Algorithm 125
Link Mapping Algorithm 127

viii

Universal DDL to IMS
(Parent-Key Algorithm) DDL . 129

Universal DDL to IMS
(Link Mapping Algorithm) DDL 130

Integration of UDDL Mappings 132
UDB Relations 132
UDDL Integration Methodology 133
Integration Example 134

VII. The Universal Data Definition Language,
the Universal Data Manipulation,
and the Data Dictionary 138

Universal Data Definition
Language 138

General Definitions 139
Command Definitions 139
UDB Medical Data Base Example . 142

Universal Data Manipulation
Language 143

General Definitions 144
Command Definitions.. 145
UDB Medical Data Base Example
UDML Examples 148

Data Dictionary 149
Key 150
UDB UDDL Data Dictionary 151

VIII. Results and Conclusions 154
The Powers and Responsibilites of

the UDBAC 154
An Augmented Relational Model . . . 155
Accomplishments 156
Universal Data Model Deficiencies . 157
Follow-on Efforts 157
Conclusion 158

Appendix A: Acronymns 160

Appendix B: Glossary of Terms 161

* Appendix C: Sample Data Base 166

Appendix D: Relational Version of Medical
Data Base 171

* Appendix E: DBTG Version of Medical
0 Data Base 175

Appendix F: IMS Version of Medical
Data Base 179

Appendix G: UDB Version of Medical
* Data Base 181

ix

t"

Appendix H: Canonical Synthesis Process .. 184

Appendix I: SADT Diagrams for UDB 187

Appendix J: Data Dictionary for SADT Diagrams 212

Appendix K: Summary Paper for Analysis and
Specification of A Universal Data
Model For Distributed Data Base
Systems 258

Bibliography 284

Vita.......................286

x

ANALYSIS AND SPECIFICATION OF A UNIVERSAL DATA MODEL

FOR DISTRIBUTED DATA BASE SYSTEMS

I. Introduction

Background

* . Since the inception of computers, the amount of data

requiring storage and subsequent manipulation in average

applications has grown rapidly. In the early 1960s, com-

puters, on the average, worked with approximately lOOK (K

1024 or roughly 1000) characters. By the 1970s this amount

had grown to 1 million characters and presently averages

around 4 billion characters. It is predicted that at the

present rate of growth the figure in 1988 will be approxi-

mately 10 million characters (8:19-20).

In the early fifties, as the amount of information being

maniipulated began to increase, the forerunners of the modern

Data Base Management Systems (DBMS) came into operation.

These were the early data definition facilities and report

9. generators. While not DBMS by current standards they were

the first step. The first real DBMS efforts, developed in

the 1960s, were in-house efforts by individual companies who

* sought to improve their own computer operation. Each new

DBMS developed within an organization maintained the same

general characteristics of the previous DBMS while taking

SA

advantage of improving data manipulation techniques and

technology. The 1970s saw a shift from the in-house DBMS to

proprietary development, with drives toward standardization

and the mathematical and theoretical aspects of DBMS.

Data Base Management Systems. DBMSs are basically gener-

alized data-processing techniques. A user stores information

in a data base and uses the facilities provided by the DBMS

to query, modify, and delete information in the data base as

desired. & good example of a data base application is that

of a university's student and class information. In a non-

computerized system, information about what classes a student

is taking or what classes a particular professor is teaching

would be listed on paper and any requested information, a

query, would have to be compiled by hand. In a non-DBMS

computerized system, all of this information would be stored

in the computer but in what are normally referred to as "flat

files". Flat files are fixed width sequential files. A DBMS

provides the user with a generalized capability to manipulate

and structure data in a manner most convenient to him. In-

stead of writing special programs to evaluate any particular

query, a user uses the DBMS's data manipulation language

(DML) to interact with the information within the data base.

A user may perform three basic types of interactions:

queries, updates (including insertions), and deletions. A

query involves "querying" the data base about the information

in the data base. "What students are taking EE 5.87 Mini/

2

Microcomputer Lab at AFIT?" "Who is teaching EE 5.87 in the

fall of 1984?" An update allows the user to modify data

already within the data base to some new value or may involve

adding a completely new value. A deletion involves deleting

information contained within the data base. A DML replaces

all of the specialized, unipurpose programs of the old

information processing systems.

The data within the data base must not only be manipu-

lated but also portrayed to the system and any application

programmers. Data base systems provide data definition

languages (DDL) to accomplish this. DDL's tell the system

* and any interested users how the information within the data

base is organized and structured at the logical level. As an

example, from a university's database, the DDL's description

of the data base (schema) would indicate what information

about a professor is being stored and how it is being organ-

ized. A possible analogy might be that of a reception desk

and filing cabinet. Before secretaries (information/software

systems), each user had to manually go to the file cabinet

(computer) and get the information that they needed. With

rk the advent of secretaries, a user could now go to the secre-

* tary and request information. Unfortunately, the first

secretaries, as with most prototypes, only knew how to find

S one type of information and, therefore, many secretaries were

needed. However, a new type of secretary (DBMS) came about

which was given a very broad based, generalized type of

3

training. Therefore, given a small amount of instruction

from the user, this secretary could accomplish all of tasks

done by the previous other secretaries plus new, previously

unspecified, tasks.

Advantages and Disadvantages. Data base management sys-

tems provide a great deal of power and flexibility. They

offer such advantages as "elimination of program duplication,

amortization of the one-time development costs over many

applications of the program, and physical and logical data

independence (8:22)." Unfortunately, all of these advantages

are paid for in terms of operating efficiency and/or increases

in resources such as hardware. The advantages, especially in

light of today's decreasing hardware costs, outweigh the dis-

advantages. DBMSs are considered to be one of the most impor-

tant and successful software developments in this decade and

have had a significant impact on the field of data processing

and information retrieval (6:3).

Distributed Environment. In recent times, DBMSs have

increased in importance and usage while network technology

and capability have also increased. These two factors have

promoted the idea of logically and physically interconnecting

independent, mostly heterogeneous, distributed data base

management systems (DDBMS) together. The term "heterogen-

eous" means that the data base systems are using different

approaches, called models, in representing and structuring

the data stored in the data base. This is opposed to a

4

.

homogeneous environment where the different systems use the

same model. These different models will be discussed

shortly.

The goal of networking these DDBMSs together is to make

these separate and otherwise independent and distinct data

base systems appear as one large data base. In this context,

the terms "independent" and "distinct" mean that the data

bases don't share access to the same information in the same

memory. They may, or may not, actually reside on the same

computer. A majority of the time they will reside on sepa-

rate computers/systems.

Given this data base network, the fact that the informa-

tion desired by any particular user physically resides on

several different data bases and, perhaps, in several differ-

ent forms (i.e. models), would remain hidden from the user.

In fact, where the information resides would be unimportant

to the user in most circumstances. Initially, any such data

base network would entail bringing currently established data

bases together. However, this not only appears practical and

advantageous for data retrieval and interaction, but also

data base creation. Therefore, in the future, such a network

would not merely allow a user to access information stored on

other data base systems, but would also allow a user to cre-

ate a new data base. These data bases could physically re-

side on one or more data base systems in whatever model (heir-

archical, network, relational) most suited that any particu-

5

.*

9

lar group of data to be contained within the new data base.

DBMS Models. Unfortunately, this goal presents several

problems. The primary problem centers around describing and

manipulating (i.e. modeling) the data stored in the data

base. A second problem centers around each model's degrees

of user control and responsibility. The models can be broken

down into two catagories: procedural and nonprocedural. Pro-

cedural languages/models require that the user explicitly

specify how the data base is to access the desired informa-

tion. Nonprocedural languages/models require only that the

user specify any predicates concerning what information

should be retrieved, modified, or deleted. Of the three

prominent models now in use, the first two, the heirarchical

and network, are procedural while the last, the relational,

is nonprocedural.

The heirarchical model (Figure 1), represented by a

simple tree structure with each "node" in the tree having one

parent (superior node) and any number of children (subordi-

nate nodes), proves the most complicated and least popular of

the three models. It was also the first DBMS and currently

the most used. Although a natural way to model many real

world environments and situations, the heirarchical model

possesses certain anomalies for insertion, deletion, and up-

dates. Additionally, the heirarchical model complicates its

structures by distinguishing structurally between entities

(records) and relationships between entities (expressed by

6

pointers). The heirarchical model's most serious drawback,

the loss of symmetry (symmetric queries handled in non-

symmetric ways), arises as a direct consequence of the fact

that any given record only takes on its full significance

when seen in the proper context (3:68). A record's full

meaning is dependent on its position within the tree. Be-

cause of this,

"ithe user is forced to devote time and effort to
solving problems that are introduced by the hier-
archical data structure and are not intrinsic to
the question being asked (3:68)."

This all leads to unnecessary complications for the user.

* Finally the model described next, the network model (which is

L~~d WARDOco

NOSPI tA L (Mamnita Code, NaMe. Address. Phone&, a of, edsj
LAO(Ljas Name, Address, Phone*)
NA RO(Ward code. Norme. a *or Ods)

STAFF(Emoto,,efl Name. Duty, shoP. salary)
* PA T!ENr(RegISrrae~ofna. 8dan Name. Addr,e. Owm dare. Sex SSNI

.0OCOR, Oocroj'= Name. SOOcaitv,

Figure 1. Hierarchical Model for Medical Data Base

(9: 149)

.

a generalization of the heirarchical model) provides all the

capabilities of the heirarchical without its limitations and

with more flexibility and ease of use.

The network model (Figure 2) allows a given record to

have any number of parent or child nodes, thus permitting the

user to model many-to-many relationships (i.e. many students

taking many classes). "The network model allows the designer

almost total control over the physical placement of the data

(8:22-23)." The network model also maintains symmetry bet-

ter. In addition, since a network model works with records

and pointers, an experienced programmer can produce very

efficient code and get maximum performance. Unfortunately,

this requires a good programmer. Even with such a programer,

an average application takes longer to design and code result-

ing in less productivity than with the next model, the rela-

tional. So while flexible and possessing potential for good

performance, the network model's complicated nature proves a

rather large drawback.

The relational model (Figure 3), considered the easiest

to comprehend and use, organizes data into tables (called

relations) made of rows (called tuples) and columns (called

domains) with no implicit ordering among the rows of a table.

Each column of the table contains atomic (indivisible) values

with no repeating items within a column allowed.

"The relational approach to data is based on the
realization that files that obey certain con-
straints may be considered as mathematical rela-
tions, and hence that elementary relation theory

8

..............................

may be brought to bear on various practical pro-
* blems of dealing with data in such files... .

It is a characteristic . . . that all information
in the database--both "entities" and 'relation-
ships,'. . . is represented in a single uniform
manner. . . .[a characteristic] not shared by the
heirarchical and network approaches (3:65)."

HOSSPITAL~4

/dA RD STAFF

OOCPI
TOR

rN
I G

*~ SIT
L

'4CP~rL ARD LAS SE~CE

STFFOCTO R PAri ENTr LAS

OCCUPANC
PATIENTS ATTENDED rESTS 4.iVED

TESTS
1A EN r iOROEREO

7A TIENT .IAGNOSIS

I D4GNOSJ

HOSPITALSOItad code. NaMe. Aadrema. Phones, z of besj
WA RD(Ward code, Name,. *of ae&/
STAFF(EmpIoyffe@ 'ne.1. Duty. Shjr, 3. jryi
DCCTOR(Docrors Nanme, Somatryj
DOCTOR PA TIENTfDocror*, Regtrartonwj
PA TIENT(Refstratbonm. Se . Name, Addmtu, Sirtstde. Sex, SSN
DIAGNOSISIDisrg is code. Oiaposts tyoe. Comoticatons. Prciur,onary ,nro,
HOSPITAL LA alowsttal code. Lajba
LASILaoa*, Name. Addreu. Phon.#)
TESTTies code. Tv Oatt ordered. 7,rn. orde d. Soec~memortet= t.,s:

?igure 2. Network Model for Medical Data Base (9:121)

A concept arising from this mathematical basis is that

of normalization. There are several different levels of

normalization, each more stringent than the last. This dis-

cussion will limit itself to the first three normal forms.

I.I

I9

t'
.

> 9".-, -. .' ..
- "- ' . - i' ?

First normal form (IMF) requires that every value in the re-

lation, each attribute, is atomic. Second normal form (2NF)

requires that every relation be in INF, and that "every non-

key attribute is fully dependent on the primary key (3:246)."

Third normal form (3NF) requires that every relation be in

2NF, and that "every nonkey attribute is nontransitively de-

* pendent on the primary key (3:248)."

"We choose to support only normalized relations in
the relational approach because (a) . . . this choice
imposes no real restriction on what can be represent-
ed, and (b) the resulting simplification in data
structure leads to corresponding simplifications in
numerous other areas--in particular, in the operators
of the [data manipulation language] (3:86)."

Unfortunately, the relational model, while simple to

understand and use, often turns out to be inefficient due to

redundancy and the increased time it takes to perform the

necessary operations (joins, selects, projections, etc. - see

Chapter 4) to gain information from the different tables.

However, the use of specialized data base computers will re-

duce these deficiencies (a current trend).

Summarizing, the heirarchical model, difficult to use,

can be emulated by the network model. The network model,

while very flexible and possessing potential for good perfor-

mance suffers from a lack of ease of use and comprehension.

The relational model, while easier to use and understand,

suffers from performance problems.

The problem with these differing models not only re-

volves around their basic differences and tradeoffs, but also

10

6m

centers on the fact that each model can prove best in cer-

tain situations. Thus, no best model exists at this time and

HOSPITAL

Hospital code ,Vane 7 Addmss I Phon I #of be&s
Z2 U Mcos 45 Bruswick 92.5411 412
13 1 CeUral 333 Sherbourne 964-4264 502
45 Chiklrens 555 University 597.1500 845
18 General 101 College 595-3111 987

WARD
tlosptal code Ward code Name #of. o

22 1 Recovery to
13 3 Intensive Care 21
22 6 Psychiatric 118
45 4 Cardiac 55
22 2 Maternity 34
13 6 Psychiatric 67 I
18 3 Intensive Care to
45 1 Recovery 13
Is 4 Cardiac 53___

I- 45 2 Maternity :

STAFF
=Hospital (ode Ward code Emplo.w.# Nam Du,, Shf ,Saiarv

22 ______ [009 Holmes D. Nurse 'vi 1500F - 6 3754 Delagi B. Nurse A 17400q' 22 6 . 8422 , Bell G. Orderly 1', %4 1"600

22 2 990! Newport C. Intern IM 1'000.
45 4 1280 "Anderson R. Intern , E 17 00
22 I 065 , Ritchie G. Nurse E _0"200 _ _

1.3 6 J 3106 Hughes J. i Orderly A 1350(w
45 1 1 8526 Frank H. Nurse I A 19.40'
18 4 1 057 Karplus W. Intern 8300

I 7379 Colony R. Nurse

DOCTOR
Hosptal code Doctor# Name J Speclainv

45 607 J Ashby W. rPediatrics
t 1 585' 1Miller G. I Gynecology

* 22 1 453 1 Glass D. Pediatrics
13 1 435 I Lee A. Cardiology

45 522 i Adams C. Neurology
-- 398 Best K. Urology
18 982 Russ J. Cardiology
22 386 J Stone C. Psychiatry

0
Figure 3. Relational Model for Medical Data Base (partial)

(9:96)

S

11

, 0 - W V R - M ,.

until an all encompassing model surfaces, these three models

will continue in use. Furthermore , differently modeled sys-

tems cannot interact at this time easily, usually requiring a

specially tailored system that depends heavily on the two

models (rarely more than two attempted) in use and the data

base management systems (DBMS) in question. This points out

another complication. Even systems using the same model, un-

less using the exact same DBMS, may use different data manipu-

lation languages (DML) and data definition language (DDL).

A possible solution to the problem of heterogeneous

models involves finding a way of universally modeling, de-

fining, and manipulating data stored in distinctly different

models and systems. Through this universal model, universal

definition language, and universal manipulation language, a

u1 Le LI 0 0 0 iLr

0 A

Fivire .4. Integrated Views of Files.

4~. - -- .

data base, implemented in a model most efficient for that

particular set of data, could still interact effectively with

other data bases. In the same way that present independent

data bases are "integrated", otherwise distinct files thought

as one, now the objective is to integrate otherwise distinct

data bases without changing their structure.

OBA DSM 0 0 0 aA

0.

UDB i S.

Figure 5. Integrated Views of DBMS.

Problem

Due to the existence and use of three different prom-

inent data models and the many different DMLs, it is neces-

sary to develop a Universal Data model (UDM), Universal Data

Definition Language (UDDL) and a Universal Data Manipulation

Language (UDML). The UDM, UDDL, and UDML will act as a cen-

tral pivoting point for distributed data base management sYs-

13

tems to effectively interact without forcing changes in each

system's own model and DML. As a form of shorthand for this

thesis, this problem will be referred to as the "UDB problem."

Scope

In this study the following aspects of a Universal Data

Base system will be addressed:

1) Conduct in-depth research of current knowledge into
the area of a Universal Data Base (UDB) to include
an examination of the canonical, relational, and
entity-based models to examine their usefulness and
potential in solving the UDB problem.

2) Develop system requirements for a UDB.
3) Develop a UDM encompassing the three major data

models in use today: the heirarchical, network, and
relational.

4) Develop a UDDL encompassing the three major data
models noted above.

5) Develop the mappings between the UDDL and the three
major models noted above.

6) Discuss the various issues and policies involved in
*@ generating the universal representations of the in-

dividual local data base systems.

Assumptions

The assumptions for this thesis will center around the

environment in which the UDM and UDML will operate. -First,

although the UDM will and should universally model all of the

three aforementioned models, there exist variants of each of

the models. This greatly complicates the issues and map-

pings. Therefore, for an initial attempt at the problem,

this effort will assume particular variants of each model to

work: the DBTG model for the network, the IMS model for the

heirarchical, and System R for the relational model (the

reader is directed to Date (3) for a description of each).

1

14

6

Secondly, the environment in which the UDB will work requires

some basic description since in an open, unrestricted environ-

ment, it would prove very difficult for the UDB to function

due to the complexities of the environment. Therefore, the

following assumptions describe the environment in which the

UDB will work (see Chapter 2 for rationale and an expanded

Si s t)

1) The environment will be such that a reasonable
amount of standardization and cooperation can be
secured. A military/government installation or
a large corporate company are prime examples.

2) An organization, the Data Base Administration Center
(DBAC), will perform the Data Base Administration

* functions.
3) Any new local data bases established after the UDB

becomes operational will follow a specific and
standard format established by the DBAC.

4) Any previously established data bases will remain
as before, but every practical attempt will be made
to convert them to the standard format.

5) The user will be required to comprehend the
UDB and will use the UDML whenever information
exists outside the local data base.

Summary of Current Knowledge

At present there exists a limited amount of research and

information concerning a UDM, UDDL, and UDML. A fairly large

* amount of research has been done concerning subsets of this

problem, such as translating from one model/system to another

model/system and so forth. Recently, a great deal of atten-

* tion has been focused on both the entity-based model develop-

ed by Chen (2) and the relational model as possible candi-

dates for the universal model. Martin' s canonical model (10)

will also be examined for its possible use. Both Chen's and

15

* Martin's models originally were developed to directly apply

to the design process of a data base, but there exists grow-

ing evidence for and research into their possible applica-

tions in the area of a universal system. The relational

model has long been advocated, and much debated, as the best

model for mast applications and, in recent efforts into this

area, has been chosen as the global model. Direct research

into the area of the UDB has been done by Date, Housel,

Huang. However, most of these approaches take differing

views and establish differing systems requirements for a UDB.

Le Approach

The first part of this study will involve an in-depth

literature search of the relational, canonical, and entity-

based models to determine their usefulness in this problem

and their potential in general. Secondly, incorporating

ideas from the literature research, recent research into the

actual area of a UDB will be investigated. This will primar-

ily center around Date's, Huang's, and Larson's work in the

area, but will also encompass any other pertinent work uncov-

* ered. Following that, a set of system requirements will be

established for a UDB. What defines a 11DB? What must it

accomplish? Next, a 11DM will be developed to handle the

three prominent data models. After that, a UDDL will be

developed and the necessary mappings between it and the other

three models will be examined. The UDML will also be develop-

ed but the mappings not addressed.

16

Overview of the Thesis

This thesis is an initial research effort by AFIT into

the area of networking heterogeneous distributed data base

systems together. This first chapter provides the reader

with some background to data base systems in general and the

UDB problem. The second chapter defines the initial systems

requirements for the UDB. It will address the environment,

the user, and the language. The third chapter discusses data

base mappings in general. The fourth chapter describes the

three models that are possible candidates (selected by this

thesis) for the UDM. The fifth chapter compares and con-

trasts the three models in terms of the UDB and chooses one

as the UDM. The sixth chapter will examine the DDL mappings

and related issues in generating the UDB. The seventh chap-

ter describes the syntaxes of the UDDL and UDML, and describ-

es the role, function, and composition of the data diction-

ary. The eighth, and final, chapter summarizes the findings

of the thesis, and discusses possible follow-on work.

" 17

0

-- - - - - - -- -- - - - - -- - - - - - -T .- *

II. Requirements:

The Environment, the User, and the Language

Introduction

Before designing a system or defining its requirements,

one must consider the issues of the environment in which it

will function and the type of users for whom it will provide

* service. A system for "casual" data base users will be

significantly different from a system designed for experi-

enced computer users. Similiarly, a system for an academic

environment would differ radically from that of a system

* designed for a military environment. In a normal, homogene-

ous system, these issues would be important. In the more

complex, heterogeneous environment, these issues are critical

and will have a significant impact on the shaping of the 11DB.

A final concern considering the user and the environment, is

what capabilities the UDDL and UDML must possess to perform

correctly.

* , Overview

This chapter will first begin with a general discussion

of the politics involved in shaping requirements and design

decisions. The second section will discuss the environment

in which the UDB can and will function. The third section

will address the user and how he/she will view the system.

The fourth section will describe the design objectives of the

DML and the conclusion will summarize the main points of the

18

.-- - -. .

chapter.

Politics

"There is nothing more difficult to take in hand, more

perilous to conduct or more uncertain in its success, than to

take the lead in the introduction of a new order of things

(11:1)." This quote by Machivelli establishes a good founda-

tion for the problems that the 11DB will face. Anyone who has

ever dealt a great deal with organizations well realizes the

problems and issues that can arise when attempting to intro-

duce change in an existing system or method of doing some-

O thing. This proves particularly true of large organizations,

the prime target of the UDB, which possess the strongest

defense against change - a bureaucracy. In general, people

resist change. Employees will be reluctant to learn a new

system. Management will be reluctant to invest time and

money getting a new system and retraining their employees.

This reluctance will be even greater when it involves coopera-

tion with other organizations. This is not meant to unfairly

project a negative view of large organizations, but rather to

* point out a well known fact that people, and hence organiza-

tions, resist change and sometimes are reluctant to cooper-

ate, even when it is to their own benefit. This basic dilem-

40 ma will and should influence the design and requirements

analysis for the UDB. What types of organizations will want

to use the UDB? Which organizations will be able to? Which

* organizations will not? In what environment can the UDB

19

function effectively?

The Environment

The functional environment of the UDB will be a complex

one due to the political factors involved as well as the

physical factors. Several observations about that environ-

ment follow. Each is described, expounded on, and conclu-

sions drawn or deferred for later discussion.

Observation 1: The current environment consists of in-I dependent, heterogeneous (or homogeneous) systems which
have already established data bases, application prog-
rams, and procedures.

* The heterogeneous nature of this environment applies not

only to the data base management systems that exist but also

the host computer systems. Further, heterogeneous, in the

DBM4S context, not only indicates differences in the model

used but also the particular implementation of any given

model (i. e. two DBMSs using the same model could be differ-

ent because the model was implemented in a different way in

each model).

Observation 2: Given that the owners of these sys-
tems will be very reluctant, at least all at once,

7 to replace their older systems with any new systems,
rewrite their application programs and/or retrain
their people, the UDB will have to function in such
a way as to minimize any of the aforementioned activi-
ties as much as possible.

Obviously, from a requirements standpoint, it would be

optimal to have the situation where the user could simply be

informed that his system has been expanded to include more

20

"o.

information and other than that, nothing has changed. From

the design view, it would be very desirable to make everyone

switch over completely to a single new system. Neither of

the above viewpoints prove to be practical ones. The design

point of view is impractical for already mentioned political

and cost reasons; and the requirements point of view because

it presents some very tough problems. The first of these

problems is that if the user is to view all the data as in

his local system, then how will the data actually outside his

system be presented to him? In what form will this data be

presented? His local model may not be able to express the

structures and constraints of another model effectively.

Should a new, unrelated model be used to present all of the

global data to the user? If so, which model should be

chosen? This will, of course, force the user to learn the

new model. If this model proves so flexible, why not use it

instead of the local one altogether? Furthermore, what

language will the local users work with? Will they work in

their local language, which would be translated into the

universal language, or will they have to work in the univer-

sal language? These issues will be discussed later in this

thesis and a conclusion or approach decided upon. Finally,

it should be noted that the independent local systems might

* actually be on the same machine but are considered distinct

data base systems.

21

7

Observation 3: The UDB will function in an environment
in which the users are reasonably cooperative and non-
threatening to each other.

One of the attractive properties of a universal system,

besides merely increasing the amount of available informa-

tion, is that if certain subsets of information, e. S. per-

sonnel information, seemed particularly suited to a partic-

ular model, e. g. the relational, then all of the personnel

information of the independent systems could be moved to a

different data base system on the network. This is certainly

one of the more extreme benefits, or possible uses for the

0 UDB, but it does illustrate its potential. However, this

type of utilization, as well as any less elaborate use,

requires a cooperative and non-threatening environment. Even

simply allowing users access to other user's information re-

quires cooperation and a "non-threatening" environment. Data

security and integrity present problems. Users, perhaps com-

petitors, could seek to illegally access or modify informa-

tion of other users. At present, data base security methods

do not provide cost and performance effective protection.

9 Observation 4: The UDB will best function within a
large governmental, military, or civilian organiza-
tion.

0 Unfortunately, at this time, it proves rather impracti-

ical to have the UDB tying together all of the data bases in

* . the "world". However, this does not really detract from the

value of the UDB. For the most part, it is large organize-
61

22

-~ ~ ~ - V I. VW -2-Ji-

tions that have the most need for the UDB and the greatest

otential gain. Eventually, perhaps a nationwide or world-

wide UDB setup might be possible but not at this time. The

complex issues of data security prove too difficult and unre-

liable.

Observation 5: Standards and policies established for
the UDB must be enforceable and enforced.

This observation is an obvious one. Standards and poli-

cies will increase the effectiveness of almost any system.

This will prove even more beneficial, and in fact necessary,

in the environment of the UDB.

Observation 6: Similiar to a data base administrator,
some sort of "universal administrator" will be re-
quired to create and enforce standards, and perform

I). other DBA type functions. This organization will be
called the Universal Data Base Administration Center
(UDBAC).

Clearly, as a local DBMS requires a DBA, the UDB will

require some similar type of entity and the responsibilities

of the UDBAC will entail a great deal more work and coopera-

tion. The UDBAC will have to coordinate all of the activi-

ties of the data bases on the system. This will certainly

require more than one individual, hence its name.

Observation 7: The prime objective of the UDB is to
develop a model to allow the prominent three models to
interact.

The primary objective is not to develop a new superior

23

model. The development of a new superior model, while cer-

- - tainly beneficial, would not necessarily solve the problem of

networking the existing data base systems together. As noted

earlier, organizations are not going to want to give up their

present systems and investment, even for some new superior

model. If the universal model proves superior then the vari-

ous organizations may eventually convert. However, this will

hopefully not be a requirement for becoming part of a UDB

system.

Observation 8: There are particular instances where
each one of the three present models proves to be the
best model for that instance. Their elimination from
use may, therefore, not be optimal unless the new model
proves able to recognize all of the strengths of the
three models without their limitations.

Assuming that the new universal model does not prove to

be a superior model, having the different models will prove

useful to the users of the UDB. It is certainly true that

there exist data base instances wherein each particular model

will prove to be the best for that instance. Therefore, a

user of the UDB could have, for example, several relational

and network data bases, and a few heirarchical. When a user

decides to establish a data base, the user or UDBAC can

choose which one of the three models it would best fit.

The user, who may be used to working on relational systems,

will, in some fashion, deal with the new data base in either

the relational model or the universal model.

24

,.0. . -. , ; , ;; . - . - j .z . ..

Observation 9: The UDM, UDDL, and UDML will all
be logical in nature but also designed to actually
appear as a normal local DBMS.

The purpose of this restriction is to present the UDML,

* UDDL, and UDM in a manner most familiar to data base users.

The logical model, while truly only logical in nature, will

* come across as an actual DBMS. It should be noted that it

may prove necessary to provide the TJDBMS with actual rela-

tional operator power (See Chapter 6).

Observation 10: The UDB will support all of the
functions that a regular DBMS would support, i.e.
retrieval, updates, deletion, etc. However, the

* UDBAC will formulate policy on deletion and updates
to ensure the proper operation of the data base and
protect the rights of the local systems.

Obviously, allowing updates and deletions on a universal

basis presents some dangers and problems. However, the same

policies that now govern local DBMS updates and deletions

should prove, for the most part, applicable to this situa-

tion, if stringently enforced. Most users will only require

and be allowed the capability to query the universal system.

The UDBAG will formulate the necessary policies to allow for

someone, other than the local system users, to modify infor-

mation stored on the local system. Furthermore, in the same

vein, security levels or views might be used to limit unau-

thorized access and modification. This can be handled at

both the local and universal level (through the universal

data dictionary). hs noted earlier, any security provided

25

will not be foolproof.

Observation 11: Each local system will have some sort
of local data directory/dictionary. Furthermore, a
global data directory/dictionary will also exist in
some fashion.

The local data dictionary will be in the local model.

The global data dictionary will be in a global/universal

model. However, where will the global data dictionary re-

side? Will it reside at one local DBMS and be able to be

passed around, if necessary? Or will it reside at some

computer system solely dedicated to that function? Will the

local systems have a portion of the global data dictionary or

will the local systems have to query to master copy of the

global data dictionary (see Observation 16)? The global and

local data dictionaries will prove to be an extremely impor-

tant entity in the UDB. Chapter 7 discusses the data diction-

ary in more detail.

Observation 12: The UDB will function in a response
time which is not significantly different than that of
the local system(s).

Once again, this may appear to be a statement of the

obvious but it is a relevant observation and an important

one. The 11DB will not be an off-line process but rather will

* respond to queries as if the information were all on the

local system, insofar as this is possible.

Observation 13: A physical network will exist to allow
the data base systems to communicate.

26

Observation 14: It is uncertain at this time what per-
centage of queries will involve non-local information.

One can conjecture, with reasonable chance of success,

that initially the large majority of the queries will remain

local. However, as the users get accustomed to the tJDB and

realize its full potential, the percentage of non-local

queries will certainly increase. With this increase in use,

the traffic on the network will increase correspondingly.

Observation 15: In a network environment, communication
costs are the prime consideration in terms of cost.
Therefore, the UDB should attempt to minimize communi-
cation not directly related to queries.

Although the scope of this thesis does not directly in-

volve network considerations or cost considerations, it is

important to realize that these are still environmental

factors which should be taken into consideration. This

thesis is focusing on the the model and DDL mappings, but is

also examining the UDB problem and system as a whole. There-

fore, while some of these observations don't directly pertain

to this thesis effort, they are presented for completeness

and for the benefit of any follow-on work.

Observation 16: By virtue of observation 11 and 15, the
gylobal data dictionary will reside on some separate sys-
tem as a master copy. Each local system will contain
some portion of the global data dictionary for its own

6 use, querying the master global data dictionary only
when necessary.

40

27

ITI,"W T .I

By having some portion of the global data dictionary,

this will reduce the amount of network interaction and respon-

se time as each query will no longer always have to ask the

global data dictionary (which would require a network communi-

cation) for information. An extreme version of this would in-

volve having each local system possess its own copy of the

global data dictionary. This would eliminate all queries

from the local systems to the global data dictionary on the

network but would also make maintaining the global data dic-

tionary more complex.

Observation 17: Via observation 15, all transmissions
of information from global DBMS should be all-records-
at-a-time (6:7).

Observation 18: The type of transaction that will occur
over the UDB will be : 1) queries, 2) data transfer,
3) global data dictionary updates, 4) UDBAC messages,
5) updates, and 6) deletions.

Observation 19: The UDB will function in an environment
which will dynamic in the way it changes.

Imagine the number of minor structural changes (adding/

deleting a relation, relationship, record, data base and so

forth) that occur at an LDBMS on any given day. Now imagine

the number that could occur in a UDB system. Obviously, the

UDBAC will have to formulate policies on this subject. It is

highly probable that the entire contents of a LDBMS will not

be a part of the UDB or available to all users. Furthermore,

the UDBAC will, in all likelihood, have to regulate such

28
0i .: i- ." _ . . i , ._ o -

changes.

With the environment in mind, it is now time to examine

the user's view of the system and possible approaches that

can be taken to accommodate that view.

The User's View

The important issue in terms of the user's view of the

universal system centers on how the contents and structures

of the universal system are presented to a user of any given

local system. Should the data in the universal data base be

presented in terms of the local model or the universal model.

Could some combination of the two work? This same debate

centers around which language (local or universal) the users

will be allowed to use. Each possibility has advantages and

disadvantages.

The local model approach (Figure 6) is appealing from

the user's and requirements viewpoint. With this approach,

the only apparent change to the user is the enlargement of

the existing data base. This will require a minimal amount

of effort on the user' s part to incorporate the UDB into

his/her system. Little or no retraining will be required.

Unfortunately, this places more of a burden on the system.

First, a two level translation must now take place (source

41LDBMS ->UDBMS ->target LDBHS). Secondly, and most

importantly, how will the data within the universal data base

be presented in the local model? Will every local model be

able to accurately depict all of the information? Will a

29

given query expressed globally result in the same set of

information returned as that same query expressed locally

(known as query equivalency). Assuming that these questions

are sufficiently handled, then every local system will re-

quire its own unique representation of the universal data

base. Farthermore, every time a modification to a data base

occurs, a new set of representations must be generated for

every different system.

UOSmS

LLOCAL

Figure 6. Local Model Approach

The universal model approach (Figure 7) is appealing

from the system's and design point of view. If all queries

0 are done in the universal model, then only a one level trans-

lation is required (UDBM4S -- > target LDBMS). Also, only one

representation of the data will be necessary and any changes

6 will only require the generation of one new representation.

i'.''.This approach does not imply that the local model is replaced

but rather that queries are done in the UJDML. Local DML

0

03

O
- .

queries could still be possible if the queries involved only

local data.

ViML
I

USER

Figure 7. Universal Approach

A combination approach (Figure 8), or bi-model approach,

has all of the disadvantages of both systems and virtually

none of the advantages. In this approach two models are

used. One model, a logical one, is used to convey the con-

tents of the data base to the various users. The second

4 Figure 8. Bi-model Approach

model is the model that is actually used to process queries,

etc (1). This approach requires the users to know and under-

31

'__" ~~~~~~ ~~~~~~~., .-. -. -.,..-. -. - - -. -..- . -.-.--- . .,

stand two new models. For this reason, this approach is not

considered a viable alternative.

A fourth approach (Figure 9) is a compromise of the

first and second. This approach involves using one of the

three local models but only one variation of each. For ex-

ample, the UDB would allow a network user to work in the net-

work model, but it would be a standardized network model, say

DBTG, for all network users on the system. The same would go

for the relational and heirarchical users. This approach has

the advantage of not forcing the user to learn a completely

new model. The user will still have to learn a new system,

S and rewrite application programs, etc., but it will at least

be a similiar model to his old one.

DIBM
uvertis

GI VA IC.

Figure 9. Generic Approach

A fifth approach (Figure 10) is a variation of the

fourth. Once again a generic representitive of each of the

three models is chosen. However, the users still work in the

32

. ,.. ,.,,,. .. -.-. -. .-. . . , . ." "- .
"" "-i . -- -. " ."- 'v . .- '..... ",' .'-" ,. ,. , . , -

local model/language, but the local transactions (queries,

etc.) are then mapped into the appropriate generic version.

The generic transaction is then mapped into the UDML. This

offers several advantages over all of the previous approach-

es. The users are allowed to work in their local models, but

the UDB still avoids having to map a large number of differ-

ent models (and variations) because it only has to map be-

tween the generic versions of the models. The trade-off is

the fact that now the UDB has an additional mapping to go

through for each global transaction. However, the additional

mapping to the generic versions is comparatively a trivial

mapping.

InL

Figure 10. Generic-Local Approach

In comparing the five approaches described above, the

last approach certainly has the most advantageous properties.

33

Unfortunately, one must now consider how the users are going

to view the data base. In the fifth approach they would view

it in their local format. However, as pointed out earlier,

this could prove very difficult and impractical to accom-

plish. This problem eliminates the first and fifth approach-

es (along with the third already eliminated). The second and

fourth approaches both require the user to learn a new model.

The fourth has the advantage that the user will be working

with a model similiar to his original and the format will

also be similiar. Unfortunately, as with the first and

fifth, the local format proves too difficult to support.

Therefore, the second approach is deemed the best approach.

Now that the general requirements of the UDB have been

analyzed, it is time to look at the general design objectives

which should be used in developing the UDML.

The Language

The following design objectives indicate the desired

traits for the UDBMS (UDDL and UDML). It is acknowledged

that some or many of them may not be practical or possible

depending on the model chosen for the UDM. Obviously, they

should impact on that choice but they will not be the

overriding factor(s).

* Design Objective 1: The UDBMS should be a user friendly
high-order language which supports all three of the

* prominent data models now in use.

34

Designing the UDBMS to be user friendly and of a high-

order language nature will make the UDBMS easier to use and

understand. Supporting the three models is an obvious objec-

tive. By supporting, it is meant that the UDBMS will be able

to map constraints, structures, and operations from the UDM

to the other models and vice versa (see Chapter 6).

Design Objective 2: The UDBMS should support the three
models with a single, integrated set of facilities, not
three separate ones (4:190).

Several benefits can be derived from this objective.

Primarily, the benefit applies to a user only having to know

one language and UDBAC (and local DBAs) only having to main-

tain one language. Additionally, if all users of the system

know the UDBMIS, there exists a common medium for them to

interact.

Design Objective 3: The UDBMS should stress the user's
view over the system's view.

Basically, this means the the UDBMS, and UDB in general,

will attempt to minimize the amount of knowledge of the under-

lying schemas and structures that a user must know. Any

given user will only have to view the UDB in one model. This

one model will either be the universal model or the local

model (see Chapter 5).

Design Objective 4: The UDBMS should be independent of
any particular computer system or hardware (4:190).

3

35

.0• " , "-* " '. ." .° . '/ ' i " i .i .' ' -"

Design Objective 5: The UDBMS should support both
procedural and nonprocedural operations (7:84).

CThe UDBMS will have to be designed to handle the diffi-

culty of nonprocedural source commands being processed

against a procedural target data base (no path specified) and

a procedural command against a nonprocedural target data base

(path specified but no real path exists). Some of the prob-

lems posed by this problem can be handled in the mapping pro-

cess. The UDB could determine the correct path if none was

specified but, of course, ambiguous situations could still

arise. The UDBMS itself could be designed to ease or elimi-

nate some of these possible problems. It is important to

note that it may not be practical nor desirable to actually

support procedural operations. It may prove too complex to

navigate through a distributed, heterogeneous data base.

Design Objective 6: The UDML should provide a full
range of navigational operations at the record level
(4:190).

It is unclear whether or not it will be possible, and if

possible, practical to support navigational operations in a

distributed, heterogeneous environment. Besides the in-

creased communication required as the user navigates through

the distributed UDB, there is also the problem of how to navi-

gate through a relational system, which may in turn be an in-

0
termediate position to another procedural system.

Design Objective 7: The UDML should provide a full range
of derivational operations at the set level (4:190).

36

S4

Design Objective 8: The UDML should be able to perform
* -- retrieval, update, and deletion operations.

Design Objective 9: The UDBMS should be able to handle
one-to-one, one-to-many, and many-to-many relationships.

It should be noted that while a model supports, for

example, many-to-many relationships, it might not support a

theoretically correct many-to-many relationship but rather a

pseudo one. The UDBMS will seek to express all three of the

above relationship types in a theoretically correct manner.

Design Objective 10: The UDML should provide embedded
and interactive capabilities which do not significantly
differ in syntax or operation.

By standardizing the snytax, it will prove easier to use

the UDML's different versions (embedded and interactive).

Design Objective 11: The UDML should provide direct
reference capability in the embedded and interactive
version (4:191).

Direct Reference is treating the data within the data

base as if it were a regular part of the program or local

work space.

"The basic point is simply that data in a database
is in the system . . . it should not be necessary
to move it from one place to another in order to
process it - it should be possible to access it di-
rectly, just as it is with ordinary . . . or 'local'
data. A comparative uniformity of reference for
local and global data is a great simplifying factor
for the user (4:191)."

Design Objective 12: The UDBMS should permit null
values.

37

The primary reason in supporting null values is that

some of the LDBMS systems support null values and it would be

easier to present them and map to and from them if the UDBMS

supported null values also.

Design Objective 13: The UDML should be designed to be
as easily parsed as possible.

This quality is necessary due to the distributed nature

of the UDB. A query may come into the system in which vari-

ous portions of the original query must be sent to different

LDBMS. A highly parseable UDML will aide greatly in this

0 process of distributing the query.

Design Objective 14: The UDML should have separate con-
structs for selection and action specification (5:100).

This will increase the parseability and the modularity

of the UDML. It provides a more flexible and powerful inter-

face. Data selected in one block may be required in the se-

lection block of another nested block, but may never be out-

put to the user (5:100).

Design Objective 15: The UDML should support selection
nesting.

Design Objective 16: The UDBMS should explicitly state

all constraints.

This will make the UDBMS more flexible and mappable

since the UDBMS should assume that there are no intrinsic

constraints within the structure of the UDM. See Chapter 3,

38

o

- . .

-~ n., C 'i~ [

Data Model Mapping, for a discussion of constraints.

Design Objective 17: The UDML should support both
record-at-a-time and set-at-a-time capability.

This will only be an objective if procedural operations

are supported. If not supported, then only set-at-a-time

operations will supported.

Design Objective 18: The UDML should be able to hold
any number of positions within the data base and these
positions will be by explicit program command, if
applicable (4:190).

Objective 18 will also only be supported if procedural

operations are supported.

Design Objective 19: The UDDL should define relation-
ships in a flexible and powerful manner. The primary

Wye- way that this could be achieved would be through not
forcing the user to physically predefine relationships.

This is an important objective because permitting the

user not to have predefine relationships improves the power

and ease of use of the system. Heirarchical and network

based DBMS are examples of systems/languages which require

the physical predefinition of all relationships (by point-

ers). Any additions or deletions of relationships could

cause a significant amount of schema restructuring. A

relationally based DBMS is an example of a system/language in

which relationships are not predefined. The desired informa-

tion is placed in various tables and how these tables are

related is, to a great extent, dependent on how the user's

39

•• '. -- . ". ."-.'-.' -. " - "i ' .' -. " " . . .

DML commands are written. Essentially, the user defines the

required relationships as he/she needs them.

Conclusion

In this chapter, the basic environmental, user, and

language requirements have been examined. In many cases

whether or not a particular objective is supported is very

dependent upon the language chosen as the UDM and how the 13DB

evolves over the remainder of this thesis. After these

decisions are finalized, the exact objectives of the 13DB will

be stabilized.

04

III. Approaches to Supporting

r a Multi-model System

Introduction

The next step in developing a UDB involves determining

how to support, in a general sense, a multi-model system.

Somehow all the models in the system must be represented and

incorporated into the UDB. Two basic approaches exist that

accomplish this goal, the mapping approach and the composite

schema approach (7). The mapping approach suggests a direct

or indirect mapping of one schema to another. The composite
LO

schema approach develops a common schema by embedding the

schema for one data model into a schema of another model

* which may in turn be embedded in some other schema of some

other model.

* . Overview

The approach to be taken in this thesis will be a type

of mapping approach which will involve an interm- diate data

model. However, in the interest of comparison and contrast,

the composite approach will be briefly described. The mapping

approach will be discussed 4n detail and will focus on the

different types of mappings and various considerations in-

9 volved. The conclusion of this chapter will compare and con-

trast the two and discuss why the mapping approach was chosen.

The discussion of the mapping approach in this chapter is

almost exclusively a paraphrasing of the 14th chapter in

41

ji

Tsichritzis and Lochovsky's book on Data Models. Citations

are, therefore, excluded. It is highly recommended as a

reference in the area of data models.

The Composite Approach

The composite approach embeds a schema for one data

model into the schema of another model. A single schema

supports the DML commands of all the models in the common

schema. This process can, of course be recursive. The

common schema produced contains objects which can be viewed

as an object of any of the models. This property allows the

user to take advantage of the strengths of the various

models. Thus, if a situation required a heirarchical model,

then that subset could be used. The same could be said for

the other models. This method is often referred to as an

"onion-layered" approach (7:91).

NE WORK

Language

HIERARCHICAL
Language

RELATION
Lanquag/ /

\ /

0
Figure 11. Onion-Layered Approach (3:451)

4

• . 42

0.

"4

The Mapping Approach

"The Mapping approach takes a source schemaI and maps it directly or indirectly into some

specified target schema of another model. Data
manipulation commands generated from the target
schema are then translated to an equivalent command
which can be processed against the source schema
(7:84)."

In mapping between data models, four aspects must be

considered in the process: structures, constraints, opera-

tions, and data bases. Since the universal system, towards

which this effort is directed, requires that the two schemas

be equivalent, the aspects of structures and constraints must

be considered as a single entity. This entity is also known

as a data model.

"Two schemas are equivalent if (1) they describe the
same data base, (2) commands expressed in terms of
one schema can be translated into commands in terms
of the objects of other schemas, and (3) the same
changes are made to the data base if any source or
target commands are executed (7:84)."

Further, the mapping process of a data base, where one

data base is permanently mapped into another, has no rele-

vancy to this thesis effort and hence, will not be addressed.

* This is due to the fact that the UDB is to function as a

communication focal point. An actual transformation from one

data base to another is not necessary nor desired. There-

fore, this leaves the mapping aspects of data models and

operations. Both of these aspects can be considered separ-

ately and could apply to either a heterogeneous or homogene-

ous environment. Finally, the resulting mappings can be des-
L

cribed as constructive or nonconstructive. a

43

"A constructive mapping is one in which a data base
(instance) according to one schema is mapped to
another data base (instance) according to another
schema. In nonconstructive mapping, the target
data base may exist, but it is not obtained through
the mapping process (9:301)."

Within this context, there are eight distinct types of

mappings. These different mappings are generally distin-

guished by their constructivity, heterogeneous/homogeneous

nature, and whether or not operation mapping occurs.

Table I. Data Mapping Types

Nonconstructive Mappings

Schema Restructuring
View Mapping

Schema Translation
Operation Transform

Constructive Mappings

Data Base Reorganization
Homogeneous distributed System

Data Base Translation
Structure and Constraint

Nonconstructive Mapping. Nonconstructive mappings fall

under one of four types: schema restructuring mapping, view

mapping, schema translation mapping, and operation transform

mapping. The first two occur in a homogeneous environment

while the last two occur in a heterogenous environment.

Schema restructuring mapping involves schemas based on the

same model in which operations are not mapped. In this map-

ping, if the source schema data base exists, the resulting

target schema data base will be virtual and is never actually

constructed. View mapping is similiar to schema restructur-

44

. . -I '

ing except that operations of the target schema are mapped to

the source schema's data base. This situation often arises

from a desire to provide different subschemas of a schema to

different users. Schema translation mapping is the same as

schema restructuring except that it is being done in a heter-

ogeneous environment. This arises during schema design when

it is desireable to express the requirements of an applica-

tion according to one data model and then implement it accord-

ing to another. The last nonconstructive mapping, operation

transform mapping, is similiar to the view mapping except it

also is in a heterogeneous environment.

Constructive Mappings. Constructive mappings also fall

under one of four types: data base reorganization mapping,

homogeneous distributed system mapping, data base translation

mapping, and structure and constraint mapping. The first two

types of mappings occur in homogeneous environments while the

last two occur in heterogeneous environments. Data base re-

organization mapping involves no operation mapping and re-

quires an algorithm to obtain the target schema data base

from the source schema data base. This mapping type incorpo-

6 rates schema restructuring since the target schema must some-

how be mapped from the source schema. When operations are

included in the mapping process, the process is called homo-

geneous distributed system mapping. This situation results

from a system with several different schemas and associated

data bases all using the same data model. This mapping re-

~Im -45

qu~ires a global schema that can encompass all of the differ-

ent schemas. Operations are then mapped against this global

schema to appropriate operations on different underlying

schemas. The data base translation mapping is the same as

the data base reorganization mapping except that operations

* are mapped and it is in a heterogeneous environment. The data

base cooperation mapping is the same as the homogeneous dis-

tributed systems mapping except that it is in a heterogeneous

environment.

In the UDB environment the resulting mapping will be

used to formulate the correct instructions for the appropri-
40

ate LDBMSs to process. Thus, the required mapping is non-

constructive. Since operations must also be mapped, the UDB

will require an operation transform mapping. For this type

of mapping, two things must be mapped, the data model and the

* operations.

Data Model Mapping

As stated, data model mapping is thie consideration of

structures mapping and constraint mapping together. The

* basic structures of data models are derived from the concepts

of sets and relations. This fact makes the mapping of struc-

tures relatively easy since most data models are defined in

* these terms. The real difficulties arise in attempting to

map constraints between models.

"A constraint can be thought of as a property of the

schema which should be true. It can also be thought of as a

46

natural relationship between some attributes or entity types

(9:275)." Constraints can also be considered as defining re-

strictions on the domains within a data base. Constraints

are expected to be true for any and all structures within the

data base (schema) for which a given constraint applies. An

example constraint would be the fact that any given employee

has only one social security number and/or that any given

employee does not make mare money than his/her manager.

These constraints disallow an employee having two or more

social security numbers or an employee making more money than

his/her manager (9:11). Constraints are expressed either

explicitly, implicitly, or both. Explicitly stated con-

straints are considered better because the user has total

control over the constraints placed on the data and is not as

limited as would be the case of implicit constraints. An

example of an implicit constraint is shown in an EMS (heir-

archical) structure. In the IMS medical data base example

(see Appendix F), information about a doctor cannot be placed

within the data base until that doctor works for a hospital.

This is not explicitly stated within the schema, but rather

0 is a direct result of the heirarchical structure. With

excplicitly stated constraints, the user or programmer will

not be hampered dealing with unnatural data constraints.

0 The difficulties in mapping constraints center on the fact

that some constraints are almost completely inherent within

the structures of some models, partially so in others, and

47

not at all for some. This proves true even when mapping

between DBMSs based on the same model since, in actual imple-

mentation, systems using the same model may still differ

slightly. One possible solution to this schema translation

problem involves developing a mapping algorithm between a

specific pair of data models. Most often this is termed a

derivation of mappings among the relational, network, and/or

heirarchical schemas. Another approach is to use a mapping

data model as an intermediary representation between any pair

of data models. In this approach, it is necessary to map

only between the intermediary model and any other data model,

requiring at most 2N one-way mappings in a system with N

schemas, rather than between every pair of data models,

requiring N(N-1) mappings (assuming no duplications). At

present there exists very little formalism in this area of

schema translation mapping. Two issues in this are unique

keys for relations and representing links and set membership

options in a relational schema. Every relation requires a

unique key. However, not every record type in a network re-

quires a key at all. Somehow a unique key must be construct-

ed for each record type in a network (or heirarchical)

schema. One approach is to use a data base controlled

attribute which, unfortunately, is visable to the user as a

system controlled attribute. Another approach is to con-

struct a unique key for each record type from specified re-

cord keys by propagating data items along links. The second

48

....... . ..i....... ..;.................. ... ". , , , : -". . '' ' -

problem of representing links and set membership requires the

specification of explicit constraints in, for example, a re-

lational schema. This may require additional relations and

the presence of null values in the relational data base.

Operation Mapping

In the heterogenous environment, operation mapping re-

quires an operation transform type of mapping. The approach-

es to this are the same as stated for data model mapping:

direct operation mapping or mapping through an intermediate

model. Unfortunately, very little formalism exists in this

area either. Hlowever, an outline of some of the issues may

prove of value.

The first issue is query equivalence. Query equivalence

"is the determination of whether a query specified on one

schema will give the desired result when executed on another

schema (9:320-321)." Problems arise between different models

when, for example, one is mapping a schema to another schema

which must be able to identify the appropriate paths to take

in acquiring the necessary information. This type of mapping

is particularly difficult when conjunctive (OR) terms appear

in the selection criteria.

Problems also arise when mapping between navigation type

operations and specification type operations (i. e. opera-

tions which specify criteria for the desired data). Specifi-

cation to navigation operations are relatively straightfor-

* ward since the mapping is nonprocedural to procedural.

49

Or . W W

Navigation operations to specification operations (or even

navigation to navigation) prove much more difficult since

navigation operations use "currency pointers" extensively.

Currency pointers indicate where in the structure of the data

base the system's attention is focused. Capturing currency

indicators in a specification language is difficult. This is

often compared to decompilation in programming languages.

One possible method is to infer a general pattern for a spec-

fication statement by grouping and analyzing the navigation

statements. Another mapping problem involves updates. The

problem centers on the fact that different data models have

different side effects on modifications because of the pres-

ence of implicit and explicit constraints. An example would

be a deletion of some record in a heirarchical schema. How

should the users of other systems view this? If other users

are to view it, how should they view it?

Conclusion

Two approaches have been presented in this chapter and

both have their advantages and disadvantages. However, the

important factor in deciding between the two centers on the

requirements of the UDB. The composite approach embeds

schemas one within another, but can this approach be general-

ized efficiently, in a stand alone language, for an arbitrary

number of DBMS with N distinct schemas? It would seem that

.. the resulting schema, assuming that it could be done, would

be extremely complicated. For example, there are many differ-

50

ent actual implementations of a network model. This proves

to be true for the other two models also.

"The primary difference between the two, from the
user's perspective, is that the composite approach
allows the mixing of commands from the different
schema's commands. The mapping approach restricts
the user to one type of command (7:86)."

Although this statement may be correct in general, in

the UDB's case the goal is not to allow a user to mix differ-

*ent model's commands but rather to allow the user to communi-

cate with other models using his/her own model's commands, or

perhaps the universal language's commands. Therefore, while

an advantageous property, it has no bearing on the UDB appli-

cation. Clearly, the mapping approach provides more flexi-

bility in a heterogeneous environment.

51

IV. Universal Model Candidates

Introduction

In Chapter Three the conclusion was drawn that the cor-

rect approach to providing a universal interface between the

three prominent data models was to use an intermediate map-

ping model. This intermediate, logical model is to be the

focal point of interaction between the different DBMS of the

DDBMS network. Any query that involves information that re-

sides on more than one DBMS of the DDBMS network will be map-

ped into the "universal" model and then parsed and mapped

back into the appropriate local model(s) to be processed by

the corresponding LDBMS. The decision that must be made,

therefore, is what model is to be this "universal" model?

One possible approach to choosing this "universal"

model would be to use one of the three prominent models now

in use. A second approach would be to choose a "logical"

model as the UDM. For this thesis three different models

were chosen for investigation: the canonical model (Martin),

the entity-relationship model (Chen), and the relational

model (Codd). These three models represent the range of

models now in existence. The canonical model, representing

one extreme, is a purely logical model with no connection to

"reality". The entity-relationship model represents the mid-

dle ground. It is a logical model but bears a strong resem-

blance to the models now in use. The Relational model repre-

sents the opposite end of the spectrum from the canonical.

52

t ---.....'.".. ,-". ". .'...... ... ,"..... -."."...

It is a model actually in use and, of course, is one of the

three models that the UDB must work with.

Overview

The purpose of this chapter is to present the possible

candidates for the UDM that this thesis effort has decided to

evaluate for their potential in solving the 11DB problem.

Each model will be briefly described to give the unfamiliar

reader some idea of what each of the models is like.

The Canonical Model

The Canonical model by Martin is defined as:

a model of data which represents the inherent
structure of that data and hence is independent of
individual applications of the data and also of the
software or hardware mechanisms that are employed
in representing and using the data (10:235)."?

The Canonical model was primarily developed to aid in

designing data bases and is as much a process as a model.

The model uses bubble charts and is a product of a process

called "Canonical Synthesis" (see Appendix H). Due to its

incremental nature, the canonical process (model and syn-

thesis) proves to be particularly good at handling dynamic

data base instances. The synthesis process is readily auto-

mated, although still requiring some amount of human super-

vision and modification for total effectiveness. The result-

ing canonical model derived from the synthesis is independent

of any model, performance constraints, or particular machine,

and is in third normal form (3NF -see Chapter 1). The canon-

53

"-a"-XA

0

ical model as noted earlier uses bubble charts. The bubble

chart structures are described below.

Bubble Charts. The most basic piece of data, called an

item (also known as field or element) is atomic. Each data

item is of a particular type and each type of data item is

drawn as a bubble. Each bubble can represent many occurances

of that data type (i. e. a name bubble represents many names,

not just one).

:O AT E.VA R RDIV AL (IjL-C
SOC~~~L.,EMPLOYEE AT EP

COL R S1IPPtIC PR- Rf::IIl.DS
AGEN \c~..'\STATUS/

Figure 12. Canonical Bubbles (10:172)

Bubble charts express relationships between bubbles

(data items) by connecting arrows which may either be single

or double headed. Single headed arrows indicate that a one-

to-one relationship (1:1) exists (e. g. each person has one

EMPLOYEE# SALARY

EMPLOYEE# G.iFRU

Figure 13. Relation in Canonical Model (10:173)

34

.......................... :......................-. ,
" .. " .' ... "- .- '. , " . . : :.. _ . .-- . ;, . . ,,,.. . ,.

mother). Double headed arrows indicate a one-to-many (1:'4)

relationship (e. g. each person can have many friends). A

bubble may have any number of arrows entering or leaving it.

In the canonical model these two examples should be

combined, although they could be separate.

SALARY

EMLOYEE#

GIRLFRIEND

Figure 14. Combining Relationships (10:174)

6 Further, these expressed relationships need not be only

one way but can go both ways, called reverse associations.

Reverse associations are not always required and are only

stipulated when that particular information is desired.

Figure 15. Reverse Associations (10:175)

Bubble charts, and hence the canonical model, permit the

expression of 1:1, 1:M, 4:1, and X:11 relationships. Bubble

charts also permit the explicit expression of optional links

(relationships). For a value of A there may or may not be a

value of B. This is indicated with a zero by the arrowhead.

55

-~~ ~....-

Figure 16. Optional Relationships (10:178)

Bubble charts allow multiple associations between data

items by allowing more than one link (arrow) to connect two

bubbles. To identify the different relationships, the arrows

are labeled.
OWNS

PERSON)DOC

AITTFN.Y

Figure 17. Multiple Relationships (10:185)

This type of situation can be avoided by the inclusion

of an extra data type:

Figure 18. Removing Multiple Relationships (10:185)

Bubbles are also permitted to be linked to themselves,

MANAGES

Figure 19. Looping Relationships (10:186)

56

called looping. As with the multiple associations, the

arrows are labeled. The example below shows that some

employees can manage other employees.

Generally, a very large portion of the data items are

grouped together because it is impractical to handle all of

the possible associations between all of the data items in a

given data base. These data-item groups are called tuples,

records, or segments in other DBMS. A data-item group is

drawn as a bar containing the names of the data items it

includes:

L SUPPUERDT SUPPLIER. SUPPLIE IRSUPU

NAME AODRESS OETAILS

Figure 20. Data-Item Group (10:176)

The above grouping represents the following bubble

chart:

Figure 21. Data-Item group in Bubble Format (10:176)

These data-item groups are then treated as if they were

a single bubble.

Each data-item group requires something to uniquely

identify that grouping of data-items. This is done by

specifying one of the data-items in the group as the key to

that grouping. The key is not chosen arbitrarily but rather

logically. The data-item group in Figure 16 has the supplier

number as the key since, of the four data-items in the group,

"5

57

it alone can uniquely identify that group. The supplier

number can be unique, however the name, address, and details

could all possibly be duplicated (i. e. two suppliers could

have the same name, or same address, etc.). The following

list of definitions describe the concept of keys and attri-

butes (10:177-178):

Primary key: a bubble with one or more single-
headed arrows leaving it. A primary key may iden-
tify many data items. In more generic data base
terms, a primary key is an attribute (nonprime)
which uniquely identifies a tuple (data-item
group).

Nonprime attribute: all items that are not
primary keys (often Just called an attribute). A
bubble with no single-headed arrows leaving it.

Secondary key: nonprime attribute with one or
more double-headed arrows leaving it. A secondary
key does not uniquely identify another data item
but rather one value of a secondary key is
associated with zero, one, or many values of

*e another data item.

Concatenated key: a composition of one or
more data items which uniquely identify a group of
data items which cannot be uniquely identified by
only one key.

DETAIL -_ .. I

SUPPLIR#~JPLR AT AT

7ART9

Figure 22. Concatenated Keys (10:184)

A final capability of bubble charts is allowing differ-

*ent levels of primary keys. Sometimes, particularly in tree

* * structure representations of data, some primary keys identify

58

*I. fi ' *.'** .

other primary keys. To improve the clarity of the bubble

chart structure, single arrows are often drawn between the

primary keys pointing upward whenever possible. The data-

item group at the top of the "tree" is called the root key.

The root key is "a primary key with no single arrows leaving

it to another primary key (10:186)." In the tree example

there is only one root key, in network structures there may

be several root keys. The primary keys in these structures

can be arranged into levels with the highest level, depth 1,

being the root key(s). Depth 2 primary keys have a single-

arrow link to a depth I primary key. Depth 3 primary keys

have a single-arrow link to a depth 2 primary key, and so

forth.

Canonical Synthesis. As noted previously, the Canonical

model is as much a process as a model. The Canonical model

is a result of applying the Canonical Synthesis (see Appendix

H) on the bubble chart structures just described.

'"The process of canonical synthesis creates the
logical model of data . . . This model is then
converted into a logical representation (schema
or schemas) [for actual implementation of the data
base] . . . (10:236)."

The process takes different user's views of the data and

gradually incorporates them into the data base, incremental-

ly eliminating redundancies, placing the data base into 3NF,

and so forth. This discussion of the canonical synthesis

will only involve additional features and construct or capa-

bilities which could influence the canonical model's ability

59

,:,, -, ... '..,.-.., . . - : " '." "" " '

to represent different models.

Due to the nature of the canonical model (and bubble

charts), it is very convenient and easy to incorporate addi-

tional views or even different views of the data. This capa-

bility is what gives the canonical model its ability to han-

dle dynamic data bases.

In the previous discussion, primary keys where defined

as a bubble with one or more single arrows leaving it. How-

ever, it does occur in certain situations that one or more

data-items (primary keys) might uniquely identify a data-item

group. These data-items are referred to as candidate keys.

A good example of a candidate key would be an employee data

base where both an employee's social security number and an

in-house employee number would uniquely identify an employees

name, and address (the data-item group being made up of the

social security number, employee number, employee name, and

employee address).

It is not always the case that data items are associated

only with other data-items but also can be associated with an

association itself. An example would be a data item PRICE

* which cannot be associated with only the Part record or only

the SUPPLIER record but rather both. Such data is called

intersection data (Figure 23).

0 Another type of intersection is an intersecting attri-

bute which is an attribute attached to more than one primary

key (it has more than one single-headed arrow pointing to

40

60

PRODUCT

OUANTITY (~T

SUBASSEMBLY

PART

Figure 23. Intersecting Data (10:244)

it). Intersecting attributes are not allowed in the canon-

ical model and can be handled in one of the three ways shown

in Figure 24.

2.

KEY 2*ATIBT

~~2.

K:E NATTRIBUTEA

3.

Figure 24. Intersecting Attributes (10:247-248)

'31

.0

The canonical model permits the user to specify 1:1,

1:M, M:1, and M:M relationships. Unfortunately, there are

several problems with M:M relationships. First, it is very

difficult to physically represent a M:M relationship. 1:M

relationships generally use a heirarchical structure or a

linked list structure to physically represent the l:M. Un-

fortunately, neither of these methods will work with a M:M.

The solution for a M:M (A <<(--- >> B)is to have one file of A

records, one file of B records, and one file showing how they

are related. The second problem is that generally with M:M

associations, intersection data will usually be associated

with it sooner or later. For this reason, M:M associations

should be avoided in the canonical model (10:245-246).

* The canonical model does not allow the user to indicate

the sequence in which records are stored.

"In general, it is not desirable to state a record
sequence in the canonical model because different
applications of the data might require the records
in a different sequence (10:248)."

The canonical model does allow the specification of

secondary-key paths. These paths are generally used to

increase the speed of searches. Interactive systems often

employ secondary-key paths.

Canonical DML. No DML has been defined for the Canoni-

cal model since it was never actually designed to be a model

for a DBMS. Rather it was designed to help a DBA in analyz-

ing a particular data base intension. If the Canonical model

would be chosen for the UDM, a DML would have to be written

62

-TCT
_1. -.

lc-K -. . . 7- J-' I-_

for it.

Canonical Conclusion.

"A canonical database structure is a minimal non-
redundant model. Its records are in third normal
form (and fourth normal form). . . [and] is some-
times referred to as a 'conceptual schema'. . . A
canonical model can be represented as a network
(CODASYL), heirarchical (IMS), or relational data-
ase system. A large canonical model may be kept,
updated, and designed by computer, to represent
overall the data which are the foundation of a
computerized enterprise (10:275-276)."

Entity-Relationship Model

Entity-Relationship (ER) models are based on tables and

graphs and were an outgrowth of the designing of data bases

using commercial DBMS. Due to this fact, ER models bear a

strong resemblance to the heirarchical and network models.

However, the ER models are generalizations of these two

models (accomplished by a direct representation of explicit

constraint and M:M relationship types).

The ER model to be discussed was proposed by Chen (2) in

1976 and is considered to be probably the best known of the

ER models (9:175). Originally, Chen's ER model was designed

for the purpose of data base design by allowing the specifi-

cation of an enterprise schema. An enterprise schema repre-

sents an enterprise's view of its data, independent of stor-

age or efficiency considerations. Unlike the other ER

1 4models, Chen's ER model's conceptual schema is not necessari-

ly directly accessible by a DBMS. The ER model only docu-

ments the logical properties of the data base and may or may
q .~

63

"""' , J $'.' j . "."".,'. ' " ". '., ," " % '". ." * .'". "" " . '

not be directly accessible.

ER Structure Glossary. The following section is a

glossary of terms defining the basic structures of the ER

model.

Entity set: Something with objective reality which
exists or can be thought of (9:26). Represents the
generic structure of an entity in an enterprise's
realm of interest (9:176). A thing which can be
distinctly identified (2:10).
Entity key: A set of one or more attributes which
uniquely identify an entity set. Artificial attri-
butes may be added to create an entity key satis-
fying the above conditions.

Relationship set: Represents the generic structure
of the relationships among entity sets (9:176). An
association among entities (2:10). "Father-Son" is
a relationship among two person entities.

Relationship key: Serves same function as the
entity key and is composed of the entity keys of
the entity sets involved in the relationship set.

Role: Function that an entity performs in a
relationship. "Husband" and "Wife" are sample
roles (2:12).

Value Set: A domain. Examples are Name, State,
Color, and Skills.

Value: A particular instance of some value set.
Membership in a value set dependent on a predicate
(9:179).

Attribute: A mapping between an entity set or
relationship set and a value set (9:179).

* ER Structures. The ER model allows the graphical

depiction of a data base through an entity-relationship dia-

* gram (ERD). The ERD shows the intension of a data base.

Figure 25 is an ERD example for a medical data base.

En an ERD, entity sets are represented by rectangular,

labeled boxes. Relationship sets are represented by diamond,

64

labeled boxes. Arcs connect the entity sets which are partic-

ipating in a particular relationship set. The arcs in the ER

model allow the depiction of 1:1 and M:M relationships. Re-

cursive links are also allowed. Mapping properties of a re-

lationship are given explicitly in an ERD but only the maxi-

mum cardinality allowed for an entity set in a relationship

II

WARDS DCCIJPA LAS

Figure 25. ERD Diagram for Medical Data Base (9:177)

I

- 65

. .! .

set is indicated (by label on arc). Letters indicate no

maximum limit on the cardinality.

The ERD allows the specification of more than one

relationship set between the same two entity sets.

N

Figure 26. Multiple Relationships (9:178)

It also permits recursive relationship sets and allows

relationship sets to have roles which is indicated on the ERD

by labeling the arcs.

1 SUPERIOR

LSTAF FMANAGES)
N SUBOROINArE

Figure 27. Recursive Relationship Set (9:178)

Besides showing the mappings between entity sets and

relationship sets, the ERD also shows attribute mapping by a

directed arc from the entity set (Figure 28) or relationship

set (Figure 29) to the appropriate value set(s). The ER

model permits this while the network and heirarchical models

disallow it and the relational requires an extra relation to

handle it.

ER Constraints. Constraints in the ER model are almost

exclusively explicit. One of the few possible inherent con-

straints is the requirement that entity set and value set

66

RESTREETTNAME

Figure 28. Attributes and Value Sets (9:180)

I' I

Figure 29. Attribute of a Relationship Set (9:181)

membership be determined by a predicate of some sort. There

are several constraints which are explicitly specified:

Domain Specification: The value set of an attri-
bute specifies the values that the attribute can
assume. For example, the Bed# and # of beds in the
medical data base could be limited to the value set
POSITIVE INTEGER. These could be further restrict-
ed by specifying a range, I to 100, for the Bed#

0 and # of beds. The ER model can express con-
straints on existing values in the data base which
can be between sets of values or particular values.
An example of the former would be the entity sets
for DOCTORS and ILL DOCTORS. The entities of ILL

67

K[."

_________________________N7_____ -7 IC

DOCTORS should be a subset of the entity set
DOCTORS. The latter would occur when the sum of
the # of beds in the wards must equal the sum of
the beds in the hospital (9:180).

Existence Constraint (existence dependency): This
constraint indicates that the existence of a parti-
cular entity set is dependent on the existence of
an associated entity set. For example, the exist-
ence of the entity WARD is dependent on the exist-
ence of the entity HOSPITAL. If the HOSPITAL enti-
ty set is deleted, so shall the WARD entity. The
ERD represents this 'with a double-rectangle box
with a label E in the associated relationship set
box and an arrow pointing to the dependent entity.
The dependent entity set is termed a weak entity
set and the associated relationship set a weak
relationship set. Those sets not termed weak are
termed regular.

* HoSPTAI.

NOSPITAL
WARDS

N

Figure 30. Existence Constraint (9:182)

ID Dependency: A case where an entity cannot be
identified by the value of its own attributes, but
rather by its relationship(s) with other entities.
The ERD represents this the same way as the
existence dependency but the box is labeled with ID
rather than E. An ID dependency is automatically
an existence constraint but not necessarily vice
versa.

* ERD Extension. The extension of an ERD is represented

by a series of tables called an entity relation (Figure 32).

1lthough strongly resembling a data base relation (see next

68

PATIENT

IAGNOSIS

ENSS

Figure 31. ID Dependency (9:183)

section and/or Chapter 1), the entity table relation is not

truly a data base relation because of the possibility of weak

entity sets and no requirement for an entity key. If the en-

tity relation does have a key than it can be viewed as a data

base relation. Each row of the table is called an entity

tuple. The extension of an entity set has one column for

each attribute associated with the set. The extension of a

weak entity set, weak entity relation, consists of all of the

PRIMARY

IK EY~1_ _ _

ATTRIWUTE EMPLOYEE-NO NAME ALTERNATIVE- %GE
j MAMIE

VOAIUE SET EMpOYEE-NO FIRST- LAST- FIRST- LAST-
(DO MAIN) E0 NAME NAME NAME NAME NO-OF-YEARS

(TUPITE > 2566 PETER JONES SAM JONES 25

2

3378 MARY CMEN BARB CMEN 23

Figure 32. Entity Relation (2:17)

attributes of the wdeak set plus the entity key of the regular

69

• ! 69

* ~ ~ ~ ~ _ - - .. S.-.

entity set(s) with which it is associated.

The extension of a relationship set is called a relation-

ship relation (Figure 33) and consists of the entity keys of

the entity sets associated with the relationship set and, if

any, attributes of the relationship set itself. Each row is

called a relationship tuple. Weak relationship relations

also exist, for weak relationship sets, but since weak entity

sets don't have entity keys, they must be identified by their

relationship with other entity sets.
PRIMARY

~~_KEY_
ENTITY RELATION PROJECT

NAME EMP_____ ____J __T

ROLE WORKER PROJECT

ENTITY T PERCENTAGE- RELATIONSHIP
ATTRISUTE EMPLOYEE-NO PROJECT-NO OF-TIME ATTRIBUTE

VALUE SET EMPLOYEE-NO PROJECT-NO PERCENTAGE
(DOMAIN) 3

RELATIONSHIP - =
TUPL266 31 20

2173 25 100
-j

Figure 33. Relationship Relation (2:17)

ER DML. When the ER model was originally defined, no

DML was specified but it was indicated that information re-

quests could be expressed using set notions and operations

(9:185). In 1978, a DL was specified by Shoshani called

CABLE (ChAin-Based LanguagE).

"The language specification concentrates on output
and selection and is based on the concepts of chains

or paths, through the entities and relationships
of the data base. The language makes use of the
fact that usually not all elements of a chain need
to be specified, but can be inferred from the

70

schema . . . A chain or path in the data base is
composed of elements called beads. Each bead is an
elementary selection criteria on either an entity
set or a relationship set. The syntax of a bead is

entity set name
5 qualification

relationship set name)

Both the qualification and the entity set
name or relationship set name can be optional in
a bead. If the attribute names are unique in a
schema, the entity set name or relationship set
name can be omitted. If the bead is not qualified

the entity set name or relationship set name
- serves merely to specify the path in the data base.

Beads in a path can be omitted if no ambiguity
arises (9:186)."

Examples (9:186-187):

List the names of all doctors whose specialty is

gynecology.

SELECT DOCTOR. Specialty= 'GYNECOLOGY'

List the names of the patients in hospital 22. Since

several paths exist from the HOSPITAL entity set to the

PATIENT entity set, the path (WARD) must be specified.

OUTPUT PATIENT. Name
SELECT HOSPITAL. Hospital code = '22'! WARD

List the name and specialty of doctors treating patients

who have tests being performed by lab 86 and who are in hos-

pital 22. For this query there are several different possi-

ble paths, therefore, one must be specified.

OUTPUT DOCTOR. Name, Specialty
0 SELECT HOSPITAL. Hospital code ='22f

LAB. Lab# -'86'/

PATIENT

ER Conclusion. The ER model is a flexible and powerful

* model. It possesses capabilities which allow it to express a

71

variety of data base structures and instances. Due to its

logical nature, it can express more than a commercial DBMS.

The Relational Model.

The relational model was originally proposed by Codd

and arose out of a desire to bring some sort of formalism in

addressing various issues and problems in the area of data

base design. The obvious answer was to use already formulat-

ed mathematical theory. The following three observations!

definitions provide a good idea of what the relational model

is. The section following this (relational structure glos-

0 sary) will provide a list of definitions of the structures

used in the relational model. The relational operators

section will describe the general operations allowed on a

relational model. They are included in the discussion of

this model because the model is based on mathematical rela-

tion theory and those operations are an integral part of the

that theory. The next section describes the constraints that

the relational model places on the data within the model.

"The relational approach to data is based on the
realization that files that obey certain con-

9, straints may be considered as mathematical rela-
tions, and hence that elementary relation theory
may be brought to bear on various practical prob-
lems of dealing with data in such files (3:65)."

"Definition: Gwven a collection of sets Dl, D2,
S . .,Dn (not ne,.essarily distinct), R is a relation

on those n sets if it is a set of ordered n-tuples
(dl, d2, . ,dn> such that dl belongs to Dl, d2
belongs to D2, . ,dn belongs to Dn. Sets Dl,
D2, D3 are the domains of R. The value n is the
degree of R (3:83)."

72

"The relational model, as defined by Codd [COD82],
consists of three basic parts, a collection of
relations that describe the logical structure of
the database, a collection of operators to mani-
pulate data stored in the database, and a collec-
tion of general integrity rules that constrain the
set of valid states of the database (8:47-48)."

Relational Structure Glossary.

Relational Extension: "the set of tuples appearing in
a relation at any given instant (3:90)." Also known as
a view.

PART Ps PNAME COLOR WEIGHT CITY I
P1 Nut Red 12 Londou

P2 Bolt Green 17 Paris

P3 Srrew Blue 17 Rome
P4 Screw Fld 14 London

PS5 Cam Blue 1 2 Paris
London

Figure 3R. Example Relation (3:33)

Relational Intension: "(in contrast to the extension,

the intension] is independent of time. Basically, it is
the permanent -art of the relation; in other words, it
corresponds to what is specified in the relational
schema (3:90)." See Figure 35.

DOMAIN SO CHARACTER (5) PRIMARY
DOMAIN SNAME CHARACTER (20)

DOMAIN STATUS NUMERIC (3)
DOMAIN CITY CHARACTER (15)
DOMAIN Pi CHARACTER (6) PRIMARY
DOMAIN PNAME CHARACTER (20)
DOMAIN COLOR CHARACTER (6)

DOMAIN WEIGHT NUMERIC (4)
DOMAIN OTY NUMERIC (5)

RELATION S (S$,SNAME.STATUS,CITY)

PRIMARY KEY (SO)
ALTERNATE KEY(SNAME)

RELATION P (PMPNAME,COLORWEIGHT,CITY)

PRIARY KEY (PS)
RELATION SP (S#,P#,OTY)

PRIMARY KEY (S#,P)

Figure 35. Relational Schema for Suppliers-and-Parts

Data Base (3:92)

73

... %~.. -. , -..- ,. ,, . . .,.-. . ..,.-

Domain: Consists of a domain name, unique to the data
base, and a fixed, non-empty set of domain values that
describe the possible values for a given attribute
(8:48). A pool of values from which the actual values
of an attribute can be drawn (3:65). Example would be
COLOR in figure 34.

Primary Domain: Any domain for which there exists
some single-attribute primary key.

Attribute: Consists of an attribute name, unique
to the relation, and a domain (8:48). A column in
a table (relation) which represents some atomic
piece of information. Example, from figure 34,
would be that the domain COLOR has the attributes
Red, Green, Blue, and Red.

Relation: A table-like structure that consists of
a relation name, a non-empty set of attributes, and
a time varying set of tuples (8:48). See figure
34.

Tuple: A row in a relational table. Often thought
of as a record of information which contains vari-
ous attributes and is uniquely identified by some
key. One example, from figure 34, would be the row
where P# -1.

Primary key: An attribute whose distinct value
will uniquely identify a given tuple from all other
tuples in the relation. Example would be P# from
the relation PART.

Foreign key: A primary key in a relation for which
it is not the primary key for that relation (but is
for some other relation).

Candidate key: A non empty set of attributes
belonging to a relation which uniquely identify, on

* a one-to-one basis, each tuple in the relation
(8:48). A set of attributes possessing the unique
identification property (3:88).

Alternate key: A candidate key that is not a
primary key.

Relational Operators. This section describes the rela-

tional algebra operations that are part of the relational

model. Figure 36 is provided for reference in understanding

74

the operators.

S Sg SsNM STATUS CITY SP S= P CTY

SI Smith 20 t London 1 SI P1 21-

S2 Jones 10 P.ris 1 P2 2rn

'3 Bl k: 30 Piris S1 P3 ,tO

Cllk 20 London S1 P4 200

S5 donus 30 Athens 100

'SI I W)
P .n PNAME COLOR I GH"T CITY S2 P1 300

P- Nait Rf.4j 12 Londun 2 P2 400

P2 Bolt Green 17 Paris S3 P2 200

P3 Screw Blue 17 Rome 54 P2 200

P4 Screw Re 14 London S4 P4 300

PS Cam Blue 12 Paris S4 PS 400

P63 Cog Red 19 London

Figure 36. Suppliers-and-Parts Data Base (3:92)

Union: The union of two (union-compatible)
relations A and B, A UNION B, is the set of all
tuples t belonging to either A or B (or both)
(3:205).

- Intersection: The intersection of two (union-
compatible relations A and B, A INTERSECT B, is the
set of all tuples belonging to both A and B (3:205-
206).

Difference: The difference between two (union-
compatible) relations A and B, A MINUS B, is the
set of all tuple t belonging to A and not to B.

Extended Cartesian Product: The extended Cartesian
product of two relations A and B, A TIMES B, is the
set of all tuples t such that t is the concate-
nation of a tuple a belonging to A and b belonging
to B (3:206).

Selection: The algebraic selection operator . . .
yields a 'horizontal' subset of a given relation -
that is, that subset of tuples within the given

* relation for which a specified predicate is
satisfied (3:208).

- Projection: The projection operator yields a
'vertical' subset of a given relation - that is,
that subset obtained by selecting specified attri-

75

.=. . .,

..butes, in a specified left-to-right order, and then
eliminating duplicate tuples within the attribute
elected (3:208).

S WHLERE CITY -'LONDON' 5* SNAME STATUS CITY

S1 Smith 20 London

S4 Clark 20 London

Figure 37. Sample Selection (3:208)

SEST I SNAUL, CLTY, S#A. s'rArusli

[CITY[': I SNAME CITY S;: TATUS

London Smith London Si 20

Paris Jones Paris S2 10

BAthens lake Paris S31 30

Clao k Lon1don S4 20

Adams Athens ss L 30

Figure 38. Sample Projection (3:209)

Join (Natural): If two tables have a column
defined over a common domain, they may be joined
with the resulting table being wider in which each

".- *row is the concatenation of the two being joined.
This is called an equijoin. When one of the two
identical columns is eliminated, that join is
called a natural join (3:76).

S.S# S.SNAME S.STATUS S.CITY SP.P* SP.QTY

Si Smith 20 London P1 300

S1 Smith 20 London P2 200

Si Smith 20 London P3 400

S1 Smith 20 London P4 200

S1 Smith 20 London P5 100

S1 Smith 20 London Ps 100

S2 Jones 10 Paris P1 300

S2 Jones 10 Paris P2 400
S3 Blake 30 Paris P2 200

S4 Clark 20 London P2 200
S4 Clark 20 London P4 300
S4 Clark 20 London P4 400

Figure 39. Sample Join between S and SP (3:210)

Division: The division operator divides a dividend
relation A of degree m + n by a divisor relation B
of degree n, and produces a result relation of de-

76

t e -.S.

. . .,, : -. " ''. " ' . ' '". """" . ." "". ""'" , '- , " ' : ", "", . .""" ," "- " . "". .""" ."'" " " . ",- ', ' ' .- ,

gree m. . . . the result of dividing A by B that
is, A DIVIDEBY B - is the set of values x such that
the pair <x,y> appears in A for all values y appear-
ing in B. The attributes of the result have the
same qualified names as the first m attributes of A
(3:211).

I DENO DtVIDEBY DOR

SM

SSi S4

Figure 40. Sample Division (3:211)

It may not be apparent from these definitions exactly

how a query is processed, therefore, let us examine a sample

query and indicate how the operations are applied (optimiza-

tion will not be considered). Query: What suppliers in

London supply at least 200 units of P2? One of many possible

ways of handling this query would be to do a Join of the S

(supplier) and SP (supplier-part) tables, S JOIN SP (see

figure 39), forming a temporary table called SSP. Next,

select from SSP where the S.CITY - 'London', SP.P - 'P2', and

where the SP.QTY >- 200 (SSP WHERE S.CITY - 'LONDON' AND SP.P

- P2 AND SP.QTY a 200). This results in a table with two

entries (second and tenth lines of the table in figure 37).

Since the query desired only the supplier's names, S.X1AME is

projected out resulting in a single column table with Smith

and Clark as the two attributes (and the answer).

Relational Intearity Constraints. In any data base

situation there is a need to insure that the data contained

=',7

~77

.. . .' * %. . .

within the data base conforms to some definition of correct-

ness (8:58). This can be accomplish, to some extent, by

establishing constraints, Integrity constraints, on how the

data can be stored in the data base. The first two cons-

traints listed are required to have a complete relational

data base (8:59). Others have also been proposed and are

listed.

Entity Integrity (Integrity Rule 1): No part of a
primary key may be null. Note: partially null
identifiers should also be prohibited (3:89).

Referential Integrity (Integrity Rule 2): "A
foreign key must have a value that is in the
primary key or be null (8:60)."

Domain Integrity: "identifies the characteristics
of data that can be stored in a given attribute
(8:62)." Insures that the correct type of data is
stored in a given attribute.

* Immediate Record State Constraint: a constraint
placed on an individual attribute value in terms of
the range of the data values (8:61). For example,
the attribute AGE might be constrained to range
only from 0 to 120.

Immediate Record Transition Constraint: a
constraint placed on changing a value relative to
its current value. For example, the attribute
TRANSACTION DATE might be constrained that the
NEW TRANSACTION DATE > TRANSACTION DATE
(8:62).

Relational DML. The relational operators previously

described form the underlying base for most relational DMLs.

Most relational DBMSs, like System R, develop a DML with a

user friendly frontend DML which is then translated into

relational algebra and evaluated. The language specified in

Chapter 7 is an example of this type of setup.

78

Relational Conclusion. The relational model is a very

simple and powerful model which has proved to be very popular

in recent years. In this description of the relational

model, the emphasis has been on providing the structures,

operators, and constraints that constitute the relational

model. For a more tutorial description of the relational

model, the reader is asked to read Chapter 1 again which has

such a description of the relational model.

Conclusion

In this chapter, the three candidates for the UDM have

been described. A conscious effort has been made to describe

the models in a general application context. In Chapter 5,

the three models will be evaluated in the context of the UDB

and the objectives developed in Chapters 1 and 2.

79

......................... 2-

V. The Universal Model

Introduction and Overview

The first four chapters of this thesis have been direct-

ed towards a discussion of the UDB problem, some goals or

objectives to be satisfied in solving that problem, and an

analysis of the system that needs to be designed. The last

chapter briefly described three models which were being con-

sidered for the universal model. In this chapter, these

three models are evaluated in terms of the UDB application.

Each is analyzed and its strengths and weaknesses noted for

this application. Then a set of selection criteria is estab-

lished and applied against the three models (comparatively).

One model is chosen as the UDM. The conclusion of this

-7. chapter then evaluates the effect that the particular model

chosen has on the observations and design objectives described

in Chapter 2. A final set of design objectives/goals is then

established.

The Universal Data Base Context

In this section of Chapter five, each model is evaluated

for its abilities in the UDB application.

Relational Model. The relational model possesses a

strong capability in a UDB application. The relational model

is a proven model, its capabilities are known (although debat-

ed). The necessary mapping algorithms to the other two

models have already been developed, or at least examined.

80

- - The relational model is very simple and easy to learn and

use. A summary of the relational model's strengths are

listed below:

RS1. Simple and easy to learn and use.

The key to this strength is the fact that the relational

model is not only easy to use but also easy to learn. The

latter factor will prove especially useful if it is decided

that the users will have to work in the universal model and

language.

RS2. Table format lends itself well to a distributed

environment.

40 This is, perhaps, the most important strength for the

relational model. The table format of the relational model

lends itself particularly well to the UDB application. It

aides in presenting unrelated information and additional in-

formation since these can be handled simply by the addition

* of more tables (relations).

RS3. A well established model. Its capabilities are
known as well as its weaknesses. Many of the map-
pings (relational to DBTG, etc.) have been done
or at least examined.

Obviously, having an established model will make the

implementation and acceptance of this model somewhat easier.

There would be some savings in terms of the fact that the

relational to relational mappings would be easier and the

relational users would have to make a minimal adjustment.

Introducing a relatively unknown model would involve more

work and research then with this model.

81

-Z

RS4. The relational model shields the user from the
underlying data formats and complexity of the
data structures.

The primary value of this strength, in the UDB applica-

tion, is the reduction in complexity.

RS5. It has a high level, nonprocedural DML which has
proved to be easier to use and more productive for
programmers (6:4).

Although the design objectives in Chapter 2 stated that

the UDML should support both procedural and nonprocedural

operations, it is important to note that it may not be practi-

cal nor preferably to support both. Nonprocedural languages

are generally easier to use and more productive for the pro-

grammers. Furthermore, it may not be possible to support

navigational operations in a distributed environment.

RS6. Storage and data structures are very simple
(6:4).

A minor strength in this particular application.

RS7. Access paths don't have to be predefined (cont-
rary to procedural languages/models) (6:4).

This is a particularly good feature of the relational

model. Besides increasing the flexibility and power of the

model, this feature will prove extremely beneficial in a dis-

tributed environment. See Chapter 2, Design Objective 19.

RS8. The relational model has a fast response time to
ad hoc queries which are considered to be a high-
percentage of the queries submitted (6:5).

Certainly a strength for a regular DBMS, and still to

some extent the UDBMS, but its impact in the UDBMS will not

be very significant since the model would only be functioning

82

7--

as a communication media. It would not be actually

processing queries (the LDBMSs would be).

RS9. The relational model handles M:M relationships
extremely well.

As pointed out earlier (Chapter 4), M:M relationships

can prove difficult to actually implement. The relational

model handles this situation quite well because the M:M

relationships are not physically stored by a linked structure

like those in most heirarcical or network DBMS. M:M rela-

tionships in the relational model are logically stored not

physically.

* RSlO. The relational DML is highly parseable and well
suited to optimization.

This is another strength which will be very valuable in

the UDB application due to the distributed nature of the

application.

The weaknesses of the relational model are summarized

.below:

RWI. The relational model is one which has been imple-
mented and, therefore, has taken into considerat-
ion machine efficiency, etc. Perhaps, since the
desired model need only appear to be a real DBMS,
a purely logical model (canonical or ER) might be

*O more flexible or better suited to the UDM role.

RW2. Even though the relational model (and operations)
can be mapped to the network and heirarchical
models (nonprocedural to procedural), perhaps it
would be more efficient to have a model with the
built-in ability to do procedural operations
rather than just being mapped into them.

RW3. The relational model cannot convey procedural
operations.

83

0'

-AD-Ai51 856 ANALYSIS AND SPECIFICATION OF A UNIVERSAL DATA MODEL 2/4
FOR DISTRIBUTED DATA .(U) AIR FORCE INST OF TECH
URIGHT-PATTERSON AFB OH SCHOOL OF ENGI. A J JONES

UCASFE14DEC 84 AFIT/GCS/ENdO/B4D-ii F/G 9/2 N

smmmhmhhhhu

-- -7- i"

LA 12

1.8_!-j 125 111 .4 1.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF SIANDARDS-1963-A

.---- --. '

""". .-4'"-,-"- -".: ","' ."'. .""-"' - ' '" "'" : " '--.".''" -"-",,".°'," " ,., - - '''' """'

. - ,...,- .,j - .' . ,. , - , ," . , ' , L ' i °*i ' * : i . : L

If the relational model is chosen as the UDM, universal

procedural operations will not be supported. Obviously, pro-

cedural operations could be mapped into the relational model

but this would done taking into consideration the entire

query. Essentially, a user could not single step through a

distributed data base without extreme difficulty in most

cases and almost impossible in others.

RW3. In general, perhaps a better approach would be to
tailor the UDM to its environment rather than
trying to fit the relational model into that role.

RW4. All constraints are not explicit.

See Chapter 3, Data Model Mapping, for a discussion of

the benefits of the explicit expression of constraints.

The Entity-Relationship Model. The ER model also pos-

sesses good potential as the UDM but in different way. The

ER model is not as simple as the relational (or canonical)

but has the capability to inherently represent all three of

the models required for the UDB (relational, network, and

heirarchical). A summary of the ER model's strengths are

listed below:

ERSI: The ER model is a generalization of the network
and heirarchical model and, therefore, will prove
easier for users of similiar systems to learn and
should assist in the mapping process. Further-
more, the ER model can be extended into a pseudo-
relational format which could be modified to make
it a legitimate relational model.

This is certainly the ER model's strongest benefit.

This particular strength would assist in the mappings and in

presenting the UDB to the individual local users in a format

84

_1..-.........

K

similiar to the local format.

ERS2: The ER model can support both procedural and non-
procedural operations.

This particular strength is one of the ER's best. The

ER model would have much more power and flexibility in sup-

porting procedural operations in the distributed environment.

It would still not be able to support all facets of such oper-

ations.

ERS3: The ER model, while based on two real world
models, is a logical model and, therefore, may
present the best of both worlds.

ERS4: The ER explicitly states all constraints.

See Chapter 3, Data Model Mapping, for a discussion of

the benefits of explicit expression of constraints.

ERS5: Since the ER model can represent all three of the
models, it will prove easier to represent the in-
formation to all users in a format similiar to
their local model.

The ER model's weaknesses are listed below:

ERWI: More complex than the other two models at the
user interface level.

ERW2: A more complex DML required to support procedural
and nonprocedural commands.

ERW3: Relationships must be predefined.

See Chapter 2, Design Objective 19, for a discussion of

predefined versus non-predefined relationships.

The Canonical Model. The canonical model, much like the

ER model, is a generalization of the network model, and to

lesser extent the heirarchical. Once the data-items are

grouped together, the canonical model begins to resemble a

85

Ir

network model. Fortunately, the canonical model does not

have to concern itself with actual implementation, and there-

fore, some of the complexity involved in such an implementa-

tion. The strengths of the canonical model are listed below:

CS1. In general, a simple representation of
information.

CS2. Canonical model, and synthesis, provide good
support for the different views that would be
encountered in a distributed environment.

CS3. The canonical model can support both procedural
and nonprocedural operations.

The weaknesses of the canonical model are listed

below:

CWl. Access paths and relationships must be predefined.

See Chapter 2, Design Objective 19, for a discussion of

predefined versus non-predefined relationships.

CW2. Storage structures are complicated by the fact
there is a distinction between entity and rela-
ionships.

CW3. All constraints are not explicitly stated.

See Chapter 3, Data Model Mapping, for a discussion of

constraints.

Selection Criteria

This section of Chapter 5 describes a set of criteria

for use in comparing the three models.

Criteria #1: Simplicity and User Friendliness.

Criteria #2: Ability to depict all three models.

This particular criteria indicates how well the model

can present the data base in the three different models. It

86

m'- .- - - ° • .- . '. , " -i . o o" • * oS. °.5 "

will determine if the users will work in their local or the

universal model.

Criteria #3: Ability to handle nonprocedural operations.

Criteria #4: Ability to handle procedural operations.

Criteria #5: Implementation benefits.

This criteria evaluates how much of a benefit will be

derived, in terms of implementation, from choosing this

model. This criteria is best shown by the relational model

which has already been implemented with many of the "bugs"

worked out.

Criteria #6: Ability to function in distributed environment.

This criteria evaluates how well the model handles the

problems of distributed information being represented and

manipulated.

Criteria #7: Ability to represent different relationships.

This criteria centers on how well the model represents

the different relationships (1:1, 1:M, M:M).

Criteria #8: Flexibility in specification of relationships.

This criteria centers on how whether or not the model

has predefined or non-predefined relationships. Chapter 2,

Design Objective 16, provides a discussion of this issue.

Criteria #9: Ability to incorporate different user views.

Criteria #10: Ability to support all DBMS functions.

Criteria #11: Ability to express constraints.

This criteria evaluates how explicit the constraints are

in each model and how many different constraints can be ex-

87

pressed. See Chapter 3, Data Model Mappings, for a discus-

sion of constraints.

Application of Criteria

In this section the criteria just described are weighted

and applied against each of the UDM candidates. The models

are rated comparatively for each criteria (see Tables II and

III). The model which best satisfies that criteria receives

a three, the second best a two, and third best a one. If two

models tie, they are both given the same score. Each crite-

ria is weighted on a scale of one to five with five being the

* most weight. The criteria are weighted according to which

are more important. The more important the criteria, the

more weight it is given.

The Universal Model

An examination of Table III brings about the unfortunate

observation that the relational model and ER model have tied

for the honor of being the UDM. Obviously, only one model

can be used for this thesis. Therefore, which one? Both the

relational and the ER models offer certain advantages al-

though they both come out equal in overall terms. To break

this tie, criteria #3 is removed from consideration. The

justification for this is the fact that the support of pro-

cedural operations in the distributed environment is imprac-

tical to implement. This brings the point totals to 67

(relational), 61 (ER), and 46 (canonical). Therefore, the

88

relational model is chosen as the UDM.

Table II. Summary of Criteria

1. Simplicity and User Friendliness
2. Ability to depict all three models.
3. Ability to handle nonprocedural operations.
4. Ability to handle procedural operations.
5. Implementation benefits.
6. Ability to function in distributed environment.
7. Ability to represent different relationships.
8. Flexibility in specification of relationships.
9. Ability to incorporate different views.

*10. Ability to support all DBMS functions.
11. Ability to express constraints.

Table III. Comparative Evaluation of Three UDM Candidates

*-Criteria - Weight - Relational - ER - Canonical-

- 1 - 2 =3 = 2 = 2=

4 23 1 m 3 3

6y 5 3 m 2 1

9 3 2 11 3 3

10 u 1 3 3 23

11 63 2 3 1m
...um.... mum.. mum... mum. mmm.mm.u.u.mm..ummmmm u mmu u umm

0 7 Toa 20 70 30 55m
mum....... m..u.u..m.mmm= u u u mmmmmmmu u u ummmmmm

m 8 m 3 u m 2 m 19

Sensitivity Analysis

The purpose of this section is to investigate how

sensitive the results of the evaluation weighting is to

change. The approach to this analysis is to choose the two

most significant (#2 and #6) criteria and evaluate the re-

sulting change in the final totals from changing the weight

factor in each up (a) or down (b) by one. This will be done

with all eleven criteria (Start) and with criteria #4 removed

(Minus). The table below depicts the resulting changes:

Table IV. Sensitivity Analysis Results

C rit. # Weight -Rel. Total mER Total -Canon. Total

- 2a - 5 m 71 - 73 -57-

: 2b m 3 m 69 m 67 m5m

- 6b m 4 m 67 m 68 m54

m 2a,6b m 9 m 68 71 :5m

: 2b,6b m 7 - 67 : 65 m52

mMinus 4 27 m 67 m 61 m46

= 2a : 5 : 68 m 64 m48

: 2b : 3 m 66 m 58 :44

2a,6b : 9 : 65 : 62 m47

*= 2b,6b m 7 m 64 : 56 =43

An examination of the above results indicates that the

original criteria set (criteria #4 included) was very sensi-

90

tive to changes in the weight factors. The second criteria

set (criteria #4 removed) is much less sensitive to these

changes and clearly shows the relational model to be the

better choice as the universal model (according to the given

criteria and weights).

Final Design Decisions

In the course of this thesis, many issues have been

raised about the environment, users, and so forth. The way

in which these issues were to be resolved was to a great ex-

tent dependent on the model chosen for the UDM. Therefore,

having made that decision, the following final design deci-

sions are presented. Many of these issues were discussed in

Chapter 2 and the reader is directed to that chapter for a

lof more detailed explanation of the reasoning behind each.

Design Decision 1: Local users will be required to
utilize the UDBMS for queries which involve global
data. Local users will still be able to utilize
their local model/DML for "local only" queries.

Design Decision 2: The data contained within the
global system will be presented to the user in a
relational format.

Design Decision 3: The UDB, when evaluating any
query in the local DML, will notify the user if and
when there is additional data in the UDBMS for that
local query.

Design Decision 4: Procedural operations will not
be supported in the UDBMS. Procedural operations
will be mapped from the UDML to those LDBMS support-
ing procedural operations but the user may not
write UDML commands which "navigate" through the
UDB.

L

91

.0

Design Decision 5: The UDBMS will be a relation-
ally based language but not necessarily any pres-
ently designed system.

Design Decision 6: The UDML will support embedded
and interactive capabilities which are syntacti-
cally similiar.

Design Decision 7: Direct Reference will be sup-
ported.

Design Decision 8: Null values will be supported
provided that those values are not primary key
values.

Design Decision 9: The UDML will have separate
constructs for selection and action specification.

Design Decision 10: The UDML will support selec-
tion nesting.

6 Design Decision 11: The UDML will support a form
of record-at-a-time capability. The records will
be acquired a set-at-a-time but may be analyzed
individually in the action specification portion of
a query.

.- 9

92

... x.................-- . .-:..•- """ "'"" ""

VI. The UDDL Mappings

Introduction and Overview

Although the UDM has been chosen through an evaluative

process, it has not been shown that the UDM (more specifical-

ly the UDDL and UDML) can perform the necessary mappings to

the other three models. The primary purpose of this chapter

is to examine the UDDL <--> LDDL mapping and related issues.

The first section of this chapter discusses various DML map-

ping issues which might affect the manner in which the DDL

mappings are performed. The second section examines mapping

issues directly related to the UDDL -- > LDDL and LDDL -- >

UDDL mappings. The third and fourth sections list the re-

strictions that this thesis effort is placing upon the IMS

"I) and DBTG models, respectively. These restrictions are de-

rived from the first two sections of this chapter. The fifth

section presents the actual algorithms which were developed

to generate the universal representations of the local data

bases. The discussions around these algorithms do not consti-

tutE a formal proof. The sixth section discusses the integra-

tion of the individual representations into one user repre-

sentation.

DML Mapping Issues

4 This section of Chapter 6 addresses issues of importance

which arose in examining the DML mappings from the UDML to

the respective DML's of the DBTG, relational, and IMS data

93

base systems.

Distributed Information. The issue of distributed

information in the DML mapping context centers on the fact

chat the UDB will have to parse possibly complex UDML com-

mands in a complex UDB environment. The relational nature of

the UDML and its modular and parseable design should make

this job somewhat easier. This discussion breaks down into

three areas: retrievals, updates, and deletions.

Beyond the actual parsing of a UDML query, a complex

issue in itself, the difficulty in handling retrievals

centers on the question of how and where will the relational

operations be done? The initial observations about the UDB

system (see Chapter 2) stated that the UDB/UDML would only

appear to be a real DBMS and would not actually have any real

relational power. Unfortunately, a problem arises, how and

where will the results of a parsed distributed query be pro-

cessed? A query is submitted to a LDBMS which translates it

and parses it into the appropriate subqueries. These sub-

queries are then sent out through the network to the appro-

priate LDBMSs to be processed. In processing these subquer-

ies the LDBMS will have to translate from the UDML to the

local DML to perform the necessary, now emulated, relational

operations. These translations are not the problem. The

problem arises when operations (i. e. join, selection, etc.)

must be done between the intermediate results of those indi-

vidual subqueries. There are two possible approaches to this

94

"0

" : " .. .-: . -. : : / -j .' : , . ' -, ' i " ".- .. '-- .-... .,.. . . .". ." " : " " : :' - . " " ' ": " ' : " "

problem. The first approach is to have the originating LDBMS

responsible for the final processing. The intermediate

results are transferred through the network to the calling

LDBMS where the data is placed into existing model and the

final processing of the query done.

The second approach is to provide the UDBMS with real

relational power. This is accomplished by providing the

UDBAC with a data base computer. The intermediate results

are now routed to the UDBAC computer, processed, and the

final results transferred to the originating LDBMS.

In comparison, both approaches require one transfer of

the intermediate data across the network but the second

approach has to transfer the final result to the originating

LDBMS. The first approach requires that the intermediate

data (in a relational format) be placed into the local model/

data base and the UDML query (relational) be translated into

the LDML and processed. The second approach requires that

the intermediate data be placed into the UDBAC computer but

no model or DML translations are required. Further, the

processing of the query will be more efficient since the

relational operations will be done in a relational manner and

not a translated one. Finally, once a query has finished

processing, the first approach requires that the original raw

data, transferred in from the other sites, be removed from

the LDBMS and any added structures be removed. The second

approach could merely delete the entire data base which was

95

0

established to process the query. A problem the second

approach does have is that the UDBAC computer could form a

bottleneck in the UDB. However, this problem can be solved

with traditional approaches such as multiprocessing, using

other relational systems on the network to relieve the UDBAC

workload, and so forth. It should be emphasized that the

UDBAC computer will be a data base computer and designed for

a heterogeneous, distributed network. Therefore, the second

approach is advocated by this thesis as the best approach but

not without trade offs.

In the context of distributed information (excluding the

issue of redundant data) updates have the same complexity and

are handled in the same manner as retrievals and, therefore,

require no additional discussion. Deletions do pose somewhat

of a problem. However, the problem does not really concern

the translation of any DML commands but rather the policy to-

wards deletions. This is discussed briefly in Chapter 8.

Redundant Data. While the issue of distributed informa-

tion presents some difficulties, the issue of redundant data

provides even more. Once again the discussion is broken down

into three cases: retrievals, updates, and d~letions.

Redundant data affects retrievals in terms of the dupli-

cated data being processed. For example, a doctor works for

4 several different hospitals and each has information about

that doctor in their LDBMS. Assuming that a UDB user request-

ed information about all of the doctors in the UDB, then that

96

doctors information (plus any other information similiarly

replicated) would be processed at each local site. Unfortu-

nately, there is no real way to prevent that extra processing

unless redundant information is not allowed or only complete-

ly replicated data is allowed. If partial replication (i. e.

a data element or elements may be stored in more than one

DBMS. An example would be a person's name and address repeat-

ed several different places within a local data base and/or a

UDB) the partially duplicated is allowed then the only thing

that can be done is to use natural joins at the UDB level (or

some other site where the various subqueries are being inte-

grated) to remove the duplicate tuples of information. If no

duplicate information is allowed, then redundant data pre-

. sents no difficulties. If only fully replicated data is al-

lowed, then any queries affecting that replicated information

need only be sent to one site where the information has been

replicated.

The way updates are handled depends on the which redun-

dant data policy (of those just described) is being used. If

partially replicated data is allowed then the update query

will have to evaluated so that the affected data at each site

will be correctly updated. This could prove to be an extreme-

ly complex evaluation. If no replicated data is allowed,

then an update query will only have to process the query

against the site where that information is stored with no

more complexity than that of a retrieval. If only fully

9

97

replicated data is allowed then the process is the same as

with no replicated data except that each site must be

updated.

The approaches to handling deletions parallels the

approaches to handling updates. Deletions are more complex

in the partial redundancy case. The added complexity arises

because deleting a tuple in one particular relation may re-

sult in more than only that particular bit of information

being deleted in the underlying data bases (i. e. the DBTG

and IMS).

40 The reader is referred to the DDL mapping issues section

for a more detailed discussion of the different replicated

data policies.

DBTG Set Selection. In the DBTG network model, there

* . often exist situations in which the DBMS needs to select a

particular occurrence of a set automatically. To permit this

to occur, the DBA must define a SET SELECTION clause within

the member subentry of the set entry (3:415). There are

three types of SET SELECTION clauses: BY APPLICATION, BY

VALUE, and BY STRUCTURAL. The BY APPLICATION type merely

* indicates that the user specifies the correct occurrence of a

* set into which to store a new occurrence of the member. The

BY VALUE type of set selection clause states that a parti-

cular attribute of the owner is used to select the correct

occurrence. The final set selection clause type, BY STRUC-

TURAL, not only specifies the attribute but states that the

98

value of the attribute in the owner must equal the value of

the attribute in the member.

Once again, the question arises as to how the UDDL will

handle these DBTG specifications. The BY APPLICATION re-

quires no special structures or restrictions. The BY VALUE

and BY STRUCTURAL are both handled by the algorithm used to

map the DBTG to the Universal. The algorithm uses the set

definitions to place foreign keys (the set selection values)

into the relational representation of the member of the set.

Therefore any connection between the two must be through that

set selection attribute.

DDL Mapping Issues

This section addresses issues of major importance which

arose in developing the DDL mapping algorithms.

The Question of Third Normal Form. In two of the follow-

ing mappings, network-relational and heirarchical-relational,

the question arises as to whether or not the relational/uni-

versal view of the nonrelational data bases should be in 3NF.

One might initially think that these mappings should be

required to be in at least third normal form (3NF - see

Chapter 1). However, it turns out to be that, at best, first

normal form (INF) can be ensured. Not only is INF the only

form that can be ensured, it may be the only one desired.

Essentially, network and heirarchical models are not based on

the concepts of normal forms and, therefore, don't enforce

them. First and foremost, the DBTG and IMS systems have

99

built in existence constraints (see Chapter 4, ER Con-

straints). The DBTG model runs into this problem through the

different retention classes that it uses. A better example,

though, is illustrated by the IMS model. In the IMS version

of the medical data base (Appendix F), the segment LAB is a

child segment of the the segment HOSPITAL. Because of the

IMS hierarchical structure, a Lab cannot exist unless it

currently serves at least one hospital in the data base.

However, in the relational version of the medical data base

(Appendix D), this is not the case. The LAB relation is

independent of the HOSPITAL relation. This version, of

course, obeys the restrictions of 3NF. The real impact of

this difference comes in terms of updates and deletions. If

a user attempted to delete a particular hospital from the

relational data base, it would be relatively straightforward.

However, this is not so the in the IMS version, since delet-

ing a hospital segment would also delete all information

about labs (among other things) that served that hospital.

Another example would be attempting to add a new lab tuple.

Via the universal model it would once again be a simple

operation. However, if the actual underlying data base were

INS, this operation would cause an error because in the IMS

data base the lab must be assigned to at least one IMS occur-

0 rence. This example leads to the second major difference

between the universal/relational model and the network and

hierarchical models. The latter two models/systems utilize a

100

great deal of replicated data (i. e. the lab information,

assuming a given lab serviced more than one hospital, would

be duplicated several times over). This fact is not evident

in a relational view of the data. The main thrust or point

of this discussion is that by violating 3NF in the universal

model, it will assist the user and the system. Examine the

* universal, INF, relation below which is derived from the IMS

version of the medical data base.

LAB

hospital code - lab code = Name -Address =Phone#

* With this universal, 1NF version of the LAB relation,

the user will realize that any new lab must first be assigned

to a hospital to be inserted. A NULL value cannot be insert-

ed because hospital code is specified as a NONULL value.

The end result of these issues is that the universal

model will not hide as much of the underlying system as a

normal relational system would. It should be pointed out

that with this policy the DML mappings should be made easier

and should reduce insertion and deletion anomalies that could

arise since the relational queries will indirectly take into

account more of the underlying data bases. It is important

to note that while only 1NF is guaranteed, 3NF will be vio-

lated only when necessary as dictated by the underlying data

bases.

LDBMS Modification vs Using Existing Data Bases. In

many of the issues discussed in the DML and DDL mapping

101

sections, the question or option came up between either

modifying the LDBMS to solve a particular problem or working

within the existing data bases. The choice between these two

was primarily one of choosing between the system and the

users. As previously stated (chapter 2), the UDB is to

stress the user's view over the system's view. For this rea-

son and the fact that requiring the modification of the LDBMS

could cause a great deal of trouble for the users, modifica-

tion of LDBMS is not suggested as the best alternative. How-

ever, this is not an all encompassing policy and each such

situation should be evaluated for the impact of any modifica-

tions versus the impact of not modifying the data bases.

The Question of Nonunique Keys. It is an unfortunate

property that both the IMS and DBTG systems allow duplicate

keys to exist. It is unclear how to handle this problem,

therefore due to time constraints, this thesis will assume

that duplicate keys are not allowed in the LDBMSs.

Keys and the UDB. In the algorithms presented in this

chapter, and in general, it will be important that the UDB

know what attributes in the underlying entities (relations,

segments, or records) form the primary key for those enti-

ties. For this reason, in the Local Data Definition Language

(LDDL) schemas this information will be available to the UDB.

DBTG Membership Classes. In the DBTG model, each member

subentry involved in a set type must include a specification

of the membership class for that set type. The membership

102

0

class affects the maintenance of the set in question (i. e.

create, delete, or modify operations). The type of member-

ship that exists is determined by two factors: the retention

class and the insertion class.

The retention class is identified by one of three types:

Fixed, Mandatory, or Optional. For discussion purposes, let

us consider a set, OM, consisting of owner 0 and member M. A

Fixed retention class indicates that once an occurrence of M

has been entered into an occurrence of OM, it can never exist

anywhere else in the set except as a member of that occur-

rence of OM (an occurrence can't change owners) (3:414). In

relational terms, this would mean that, for example, any Ward

code, wc, matched with a Hospital code, hc, could only be

matched with that particular hc and no other. Another

example involves a student data base with a TEACHER

(Teacher#, other information) relation, a STUDENT (Student#,

other information) relation, and a ADVISOR (Student#,

Teacher#) relation. A fixed retention would mean once a

student was assigned an academic advisor, he/she would have

to keep that same advisor as long as that student was

contained within the data base. The relational model, of

course, allows for no such restriction. The user or the

user's interfacing software is responsible for enforcing that

articular kind of constraint. A Mandatory retention class

indicates that once an occurrence of M has been entered into

an occurrence of OM, it can only exist in the data base as

I.10

I'. 103

some occurrence of OM (3:413). In the medical relational ex-

ample, this would indicate that Ward code could not be paired

with any other key than the Hospital code. Consider the

student data base described earlier, a mandatory retention

would indicate that a student may change advisors throughout

the period that a student's records are within the data base,

but each student must always have an academic advisor assign-

ed to him. Once again, the relational model (relational alge-

bra) does not intrinsically provide this constraint. It

could be accomplished by providing additional integrity con-

straints such as those described by Date (3). The final re-

tention class, Optional, places no restrictions upon the set.

The relational model would be considered to have an Optional

retention class.

There are two classes of Insertion: Automatic and Man-

ual. The Automatic insertion class indicates that when an

occurrence of M is entered into the data base, the DBMS will

connect it into the data base in the appropriate occurrence

of OM (program must generally specify which occurrence of

OM) (3:414). In the medical data base, an example would be

that if a test were ordered (thus inserted in the TEST re-

cord), it would automatically insert an entry into the TEST

ASSIGNED and TESTS ORDERED sets. The Manual insertion class

indicates that the user's application must explicitly issue

the necessary connect command to insert any occurrence of M

into OM (3:414).

104

6 . i i

The next question is, of course, how are the membership

classes going to be represented in the universal/relational

model and/or mapped into the DBTG network model?

The retention classes can be handled in a relatively

straightforward manner. A Fixed class retention is indicated

in the DDL by a "Unique associations" clause (see Chapter 7).

It is important to note that this only notifies the user that

he/she should make these associations unique; it is up to the

user to police this outside constraint. Obviously, this is

not the most eloquent solution but one that, in theory,

should work. It is a simple solution and is, perhaps, better

than not allowing Fixed retention at all. A Mandatory reten-

tion class is a default class due to the DBTG to Universal

algorithm which automatically places all relations/sets into

a mandatory retention class. An optional retention class

requires that the key of the owning record is permitted to be

NULL in the member record. An example would be in the STAFF

DOCTORS set which has HOSPITAL as the owner and DOCTOR as the

member set. Therefore, the DOCTOR record would allow its

Hospital code to take on a NULL value (see Chapter 4, page

77, Integrity Rule #2).

The insertion classes prove a bit more difficult to

solve. Manual insertion requires no modifications or algo-

rithm to accomplish. A brief examination of possible

solutions to handling Automatic insertion shows it to be

complex and probable solution(s) to be very cumbersome

105

(particularly when one considers cases of different models

represented by the same universal relation). Therefore, in

this thesis effort, the Automatic retention class will not be

allowed.

Distributed Information.. The issue of distributed infor-

mation in the DDL mapping context is a relatively straight-

forward problem. The algorithms presented in this chapter

map a local heirarchical, relational, or network data base

into a universal/relational representation. However, these

individual representations must still, if desired, be inte-

grated with other data bases (or portions of other data

bases). Therefore, after the required universal data base

representations are generated, they are to be integrated

* . together and evaluated. The evaluation, done by the UDBAG,

involves removing redundant, horizontally split, and verti-

cally split relations.

Redundancy involves removing redundant relations. The

removal of a redundant relation or data base requires that

they be completely identical or at least, if having alternate

names or other constraints, combined in a manner which is

lossless.

A horizontal split is a case where a relation is com-

prised of attributes which are physically located at differ-

S ent sites. Such relations add complexity but may not be

avoidable. A horizontal split may also occur when two or

more data bases are storing very similiar data (such as the

106

" "three medical data bases used in this thesis). An example

would be where a relational data base in the network has a

universal (as well as relational) relation with three attrib-

utes A, B, and C. One, or perhaps two, other data base con-

tains a generated universal relation with attributes A and B;

and another with A and C. Obviously, in a normal relational

system, the correct relation would have A, B, and C in one

relation. In the UDB, placing them together would cause some

additional complexity in the DML queries but not a signifi-

cant amount. This thesis effort will assume that such situa-

tions are resolved as if they were in a normal DBMS. Another

possible reason for such a situation to exist, other than the

physical one already discussed, would be where a certain num-

ber of data bases might have a relation with attributes A, B,
Vol

C, and D, while others might only have A, B, and C. There

are four possible solutions to this situation. The first is

to have separate relations. Unfortunately, the user must now

find all of the pertinent relations in a data base. The

obvious problem occurs when the user is performing an update,

misses a relation, and now the data base has an integrity

violation. The second is to remove attribute D from those

data bases having it; restructuring those data bases to re-

r tain the information contained in D or the third is to add

attribute D to those who did not already have it, possibly re-

structuring those data bases. This solution is the easiest

from the system's viewpoint but could be costly and difficult

..

for the users to accomplish. A fourth solution is to make

the universal representation appear to have the extra attrib-

ute (not a key) when not all of the underlying data bases do.

This is certainly easier for the user but adds some complica-

tions to DML translations. If the added attribute does not

exist anywhere else in the underlying data base(s), then it

will have to be treated as a NULL allowable attribute. if

the attribute does exist else where in the data base, then

any retrievals, updates, etc., will have to correctly process

that attribute in some manner. It is important to note that

while this solution appears to be the best solution of the

four (and will be assumed for this thesis), it is not clear

that the DML translations will always be able to correctly

handle such situations. The final decision on this solution

will have to wait until the DML translations are examined

more closely.

A vertical split is a case where two or more relations

are identically structured but contain different information

(medical data bases 3ood example). These relations will be

represented as a single relation.

Redundant Data. While the issue of distributed informa-

tion presents some difficulties, the issue of redundant data

proves even more so. Before discussing the problem it is

important to understand exactly what is meant by redundant

data in the UDB context. Redundant data is in general is any

information which is repeated verbatim in more than one place

108

(DBMS). The solutions to the problems of redundant data

depend on the policy that is established. Will the UDB allow

redundant data to exist? Would it be better to only allow

completely redundant data? Or finally, must the UDB support

partially redundant data (as well as fully redundant data)?

In this subsection, the above issue will be addressed first

with each described in terms of its advantages and disadvan-

* tages. Then the two possible cases of redundant data will be

discussed in terms of each of the three possible redundant

data policies. The section will conclude with a recommenda-

tion as to which approach to use.

0 The first possible policy toward redundant data would be

not to allow it to occur. At first one might think this

policy without any benefits. This is not true. First, such

a policy would eliminate any problems with redundant data

retrievals, updates, and deletions, greatly reducing the com-

plexity of mapping these commands over the network. Second,

since the environment is stated as being a cooperative one,

the UDBAG will have the power to move information around in a

any manner it desires to improve the efficiency of the sys-

S tem. The users would never know that the information had

been moved (Note: this does have a ramification for the

LDBMSs from where the data was removed. This could be solved

* by having all queries done in the UDM or having the LDBMS

make a system-generated request to the network for the infor-

mation that had formerly been at that LDBMS). Removing

109

* redundant information (except for backups) rom the system

would free up a great deal of memory for other uses.

Unfortunately, there are also problems with this policy.

First, this will greatly increase (depending on the data) the

activity on the network, both in terms of queries and data

transferal. This will also slow down the system's response

time. Finally, if that particular site goes down, that infor-

mation would be lost to the network until it was brought back

up or the backup copy was activated (Note: Using backups, in

a certain sense, makes this policy more like the fully redun-

dant data policy depending on how the backup' s integrity is

maintained).

The second possible policy is the fully redundant data

1W policy. The first advantage of this policy is that extra re-

trieval processing would be eliminated since only one of the

N number of sites would have to be queried. Secondly, al-

though all sites would have to updates and deletes sent to

them, the queries (UDML) would all be identical. Thirdly,

the UDBMS could route a query (retrieval) to one copy of the

data over the others depending on the workload at the differ-

ent LDBMS involved. And finally, with multiple copies there

is automatic backup in case a system goes down. If one copy

goes down for a certain period, then when it comes back up it

could be backed up one of two ways. First, a list of any

modifications could be maintained by the UDBAC and executed

against the LDBMS when it comes back up, or a current copy

110

'.'. .* . . from an unaffected site could be transferred in mass to the

formerly down site, replacing the old information. The

disadvantages to this policy parallel its strengths. Multi-

ple copies require N times the work to update and delete

assuming N copies present in the network. Multiple copies

take up much more memory in general and, depending on the

local user's needs, may involve storing a great deal of un-

necessary information (for that LDBMS). And if the informa-

tion is not stored there, then the amount of network activity

and the transaction response time will both go up. The real

blow to this policy is the amount of memory that will be re-

quired to support it. It is possible that under certain cir-

cumstances, this policy could be used but not as a data base
wide one. It is important to note that both of the first two

possible policies involve local restructuring of the data

(see discussion in this chapter on this subject).

The third, and last, possible policy is to allow par-

tially redundant data, i. e. basically allowing the systems

to exist as they are. The primary advantage of this policy

is that it requires no LDBMS modifications and places no

restrictions (at least a minimal set) upon the local users.

From the local viewpoint this could reduce the network activ-

ity and increase transaction response time because the infor-

mation most often needed could be stored locally. This poli-

cy certainly has some disadvantages. Allowing partially re-

dundant data will increase the complexity of integration of

the individual universal representations of the local data

bases. With this policy, retrievals will require extra

processing since redundant data will be examined several

times and it will require a natural join at the UDB level to

eliminate the redundancy (see redundant data discussion in

the DML mapping issues section). This will require extra

data to be sent along the network (along with the extra

queries). Updates and deletions pose similiar problems along

with some additional integrity problems. While all of these

disadvantages are not desired, the end result is that partial

edundancy is unavoidable. One might avoid it in terms of

"redundant structures" but not in terms of redundant attrib-

utes. Consider how many times a person's name is repeated in

a UDB linking all of the base personnel DBMSs in the Air

Force and the main personnel data base at Manpower and Per-

sonnel Center in Texas. It seems extremely undesirable to

have all of that information stored at one place (at least

with communication costs today) or to have all of the sites

have all of the personnel data. Furthermore, it is decidedly

inconvient to allow a person's name to only appear in one

place. Clearly, partial redundancy must be handled, whatever

the cost. Having discussed the three different possible pol-

icies towards redundant data, let us examine the two possible

types of redundant data that could occur.

The first type of redundant data involves two or more

relations which are identically structured (in the universal

112

0

representation) and contain the exact same information or

portions of the exact same information. There are several

options in handling this situation. If it is known that the

information is fully duplicated (and will remain that way)

then the the two (or more) relations would be combined (in

the universal view) and appear as one relation. It would be

indicated in the data dictionary that the two different phys-

ical underlying "relations" were composed of fully duplicated

data. If full duplication can't be guaranteed or is not in-

tended at all, then the different relations can be represent-

ed as separate relations or as one relation but with added

complexity and processing.

The second type of redundancy involves two (or more)

relations which are identical except for some extra informa-

tion in one (or more) of the relations. An example illus-

trates:

PRESENT PATIENTS PAST PATIENTS

=A =B=C= =A =B =C D=

There are several possible solutions to this problem

depending, on which redundancy policy is in effect. Perhaps

one relation is for PRESENT PATIENTS and the other for PAST

PATIENTS and it is desired that they be separate. In the

case were one relation merely has an additional attribute or

that attribute is somewhere else in the data base's individ-

ual representation, then modifications might have to be made

or the additional complexity and burden placed upon the sys-

113

SO

AI0

tem with the DBA making these decisions. The possible modifi-

cations include physically adding, deleting, allowing the

attributes to be NULL, and even creating another relation (at

the UDB level). The reader is referred to the section on

UDDL Integration at the end of this chapter.

Relational Constraints

This section summarizes the limitations that are being

placed on the System R relational model/system.

1. The System R schema will inform the UDB as to which
attribute(s) in a relation is the primary key.

IMS Constraints

This section summarizes the limitations that are being

placed on the IMS heirarchical model/system.

WV 1. Duplicate keys are not allowed.

2. Unless otherwise noted, the abilities and powers
of the IMS system are as presented by Date (3).

3. The IMS schemas will inform the UDB of the primary
key(s) in each IMS segment.

DBTG Constraints

This section summarizes the limitations that are being

placed on the DBTG network model/system.

1. Duplicate keys are not allowed.

2. Only optional and mandatory retention classes are

"policed" by the system. Fixed retention is user
"policed".

3. Only manual insertion is allowed. Automatic in-
sertion is not.

114

4. Unless otherwise noted, the abilities and powers of
the DBTG network system are as per Date (3).

5. The DBTG schema will inform the UDB as to which
attribute(s) in each DBTG record is the primary key.

Data Definition Language Mappings

The purpose of this section is to examine the mappings

between the UDM and relational model, the UDM and network

model, and the UDM and the heirarchical model in terms of

their respective data definition languages. Each discussion

will describe a general approach or algorithm to performing

the respective mapping. An algorithm is described for the

LDDL to the UDDL and the UDDL to the LDDL. The former is

what is used by the UDBAC to generate a universal representa-

tion of each physical data base. The latter is merely used

to show that the original underlying data base can be recap-

tured. In actual practice, the Data Dictionary will contain

the necessary information to accomplish the UDDL to LDDL map-

ping if and when required. This section merely describes how

the individual representations are generated. It does dis-

cuss how these individual representations are integrated into

a single UDB. The reader is referred to the Integration

section at the end of this chapter.

The approach taken in the DBTG mappings algorithm is

* initially based on Larson's (7) work. The IMS algorithm is an

extension of this due to the fact that the heirarchical model

is a subset of the network model. All examples for the algo-

rithms presented in this section are from the sample data

115

- ,- - -,

base presented in the appendices. The reader is referred to

Appendices C-G.

Mapping Algorithm Key. The following definitions and

abbreviations for attributes are used in explaining the

algorithm to follow.

Primary key: An attribute or set of attributes within
a tuple, segment, or record which uniquely
identifies that tuple, segment, or record.
Example: In HOSPITAL, Hospital code is
is the primary key.

Foreign key: An attribute within a tuple, segment, or
record which is a primary key in another
tuple, segment, or record. In WARD,
Ward code is the primary key and Hospital

* code is a foreign key.

Hospital code - HC Ward code - WC Doctor# - DOC#
Diagnosis code - DC Employee# - EMPL# Test code - TC

* Registration# - REG#

lipNotation: Names in all capital will denote the name of
a relation, segment, record/set or one of the abbrevia-
tions for attributes outlined above. It will also be
used to convey the original contents of that relation,
segment, or record/set (i. e. In the context of the
DBTG record named HOSPITAL, the mapped relation HOSPITAL
might only be listed like below:

=HOSPITAL

But would actually be conveying:

HOSPITAL

HC Name -Address -Phone# = tof beds

*If during a mapping algorithm, an attribute, WC, was
added to a relation, WARD, it would be shown as follows:

-WARD - WC

116

It would actually be conveying the following:

WARD

l WC H HC 1 Name # # of beds1

Universal-Relational Mappinas. These two mappings,

universal DDL to relational DDL and vice versa, are both

trivial since the universal model is also a relational model.

Any mappings would only involve syntax translation. There-

fore, these two mappings will not be discussed.

Network DDL to Universal DDL. This mapping appears to

be a relatively straightforward algorithm. The network

(DBTG) model has two types of structures, records and sets.

Records and sets more or less correspond directly to rela-

OSIAHOSPI TAL

1HOSPITAL WARS AO USED

S"TAFF DOCTORS

NVARD DOCTORt HOSP T4L LA8

'.4RDST DOCTORS ATTENDING HOSPITALS

SDOAFF DCTOR PA TIENTr L
8

OCCUPANCY
PA TIENTS A TTENDED TESrS ASSIGNED

rESTS

PATrIENTr i ORDERED rE

PA TlEN~
r

DIAGNOSIS0

DIAGNOSIS

Figure 41. DBTG Version of the Medical Data Base (9:121)

117
. . .

.

tional tuples although additional attributes may be required

to make the record a true tuple. These additional attributes

are determined by the owners and the corresponding set selec-

tion values of any sets a given record is involved in. The

mapping algorithm is as follows:

1. Place the attributes of each record (RECORD NAME IS)
into a relational tuple format.

Specific example:

STAFF

= Empl# - Name = Duty = Shift = Salary -

Mapping status after step 1:

= HOSPITAL = = WARD = = STAFF -

= DOCTOR = = DOC-PAT = = PATIENT

DIAGNOS. TEST LAB

= HOSP-LAB -

2. Any sets which are structurally set selected (SET SEL-
ECTION IS BY STRUCTURAL) are formed into relations with
the relation consisting of the primary keys of the two
records involved. These sets are removed from consider-
ation.

Specific Examples:

DOCTORS ATTENDING PATIENTS ATTENDED

=DOC# REG#= =REG# DOC#U

118

r '- .' -'..'--' .i ' .. *.'- '" " - . ' . i . .? " " - ' - i .' '

.0

LABS-USED HOSPITAL-SERVICED

=HC = HC Lab#= =Lab# = HC = Lab#=

3. Examine all sets in which a record, now relation, part-
icipates in as a member (MEMBER IS) and the retention
class of that set is OPTIONAL. These sets are formed
into relations in the same manner as they were formed
in step #2. These sets are removed from further con-
sideration.

Specific example:

STAFF DOCTORS

= HC = DOC#

Mapping status after step 3:

HOSPITAL = = WARD = STAFF =

= DOCTOR = = DOC-PAT = = PATIENT =

= DIAGNOS. = TEST = = LAB =

= HOSP-LAB =

DOCTORS ATTENDING PATIENTS ATTENDED

= DOC# - REG# 7 ;REG#=DOC# =

LABS-USED HOSPITAL-SERVICED

HC HC Lab#= =Lab# =HC= Lab#=

OCCUPANCY STAFF DOCTORS

=WC REG# =HC=DOC#

119

4. Examine all sets in which a record, now relation, part-
icipates as a member. Add the attribute which func-
tions as the set selection value (SET SELECTION IS BY
VALUE OF) to the member record/relation. Added attrib-
utes are considered foreign keys within the relation.
If the retention class is fixed, then a unique associa-
tion between the key passed and the primary key of the
receiving relation is indicated (in the UDDL).

Specific example:

STAFF

Empl# = WC = Name = Duty = Shift = Salary =

Mapping status after step 4:

= HOSPITAL = = WARD = HC = = STAFF = WC

= DOCTOR = = DOG-PAT = = PATIENT =

- DIAGNOS. = REG# = = TEST = Lab# = REG# =

HOSP-LAB LAB =

DOCTORS ATTENDING PATIENTS ATTENDED

-DOC# = REG#= =REG# = DOC#

LABS-USED HOSPITAL-SERVICED

=HC HC= Lab#= =Lab# =HC =Lab#=

OCCUPANCY STAFF DOCTORS

SWC = REG# 0 HC#DOG#=

5. Examine all relations in which attributes were added in
in step #4. If there are three relations (a, b, c) and
in step 4 an attribute, X, was passed from a to b and

120

. .. d . -

4 1 7 9 .7 - - - 4

an attribute, Y, from b to c, then step #5 would pass X
to c. In the example below, HC was passed to WARD and
WC passed to STAFF in step #4. Step #5 now passes HC
to STAFF.

Specific example:

STAFF

a Empl# = WC = HC a Name a Duty a Shift = Salary =

Mapping status after step 5:

= HOSPITAL = a WARD = HC a = DOC-PAT =

= DOCTOR a = STAFF = WC = HC a a PATIENT a

= DIAGNOS. = Reg# = = TEST = Lab# = Reg# =

= HOSP-LAB = LAB a

DOCTORS ATTENDING PATIENTS ATTENDED

=DOC# REG#s REG# =DOC#s

LABS-USED HOSPITAL-SERVICED

=HC = HC Lab# a =Lab#= HC =Lab#=

OCCUPANCY STAFF DOCTORS

WC = REG#a HC DOC#a

6. Remove any redundant attributes within any relations.

7. Remove any redundant relations. These relations
should be marked as alternate names relations.

121

0 - .'- '

Final mapping after steps 1-7:

-HOSPITAL- =WARD = HC= =LAB=

- DOCTOR = - STAFF - WC = HC = = PATIENT =

= DIAGNOS. = Reg# = = TEST = Lab# = Reg# =

OCCUPANCY STAFF DOCTORS

= WC =REG# = = HeC=DOC#=

DOCTOR-PATIENT

= **DOCTORS ATTENDING

= REG# = DOC# = **PATIENTS ATTENDED

HOSPITAL-LAB
**HOSPITALS-SERVICED

= HC = Lab# **LABS-USED
= S =.....= ====

Universal DDL to Network DDL Mapping. This mapping

appears to be fairly straightforward. For the most part,

relations can be directly mapped into DBTG records after

removing any foreign keys. The foreign keys indicate where

DBTG sets should appear. Relations composed of only foreign

keys may also indicate where DBTG sets should appear. The

UDDL to Network DDL algorithm is as follows:

1. Start with relations which are not composed entirely of
foreign keys. Form them into records, removing the
foreign keys but noting which foreign keys were former-
ly associated with that newly formed record.

122

S. .

' Mapping status after step 1:

LI A

DIOSISREGi- TEST(REG#,LAB#)

2. Determine where each foreign key is the primary key and
connect that record with the record which formerly had

0 the foreign key as part of the original relation. The
owning record is the record for which the key is pri-
mary.

Mapping status after step 2:

WARD

STAFF &ENLA

•P

3. Consider any relations consisting of only two attrib-
0 utes, both foreign keys. If the relations have alter-

nate names, then the relations are formed into records
with the foreign keys as attributes. These records
are connected via structural set selection sets. Which
records are to be connected is determined by the for-

S

123

6 . .i : :: :. - , .. : . ; : : . . ." - - - " " - - ' - - " -

eign keys. The records for which these foreign keys
are the primary keys are connected. If the relations
do not have alternate names, then these relations spec-
ify which records are to be connected (the owner/member
is specified in the data dictionary).

-------- HOSPITAL

WARD DOTO HOSPITAL-LABI

TISAF DOCTOR-PATIENT LAB._L'

- -,, PAT IENT -- T

4. Examine all paths between records. If there is more
than one way to get from a given record A and another
record B, eliminate last link in all but the longest
path.

Mapping status after step 4:

HOSPITAL

PATIETTSI--

124

By comparison to Appendix E, one can see that the

original DBTG data base mapped in the previous section has

been recaptured.

IMS DDL to Universal DDL. This subsection presents two

approaches to mapping the IMS DDL to the Universal (relation-

al) DDL. The first approach, the Parent-Key algorithm, forms

relations by pushing the key of the owner sets into the mem-

ber sets as foreign keys. This results in a universal (rela-

tional) representation which is not in 3NF (only lNF) but

captures the restrictions for entering, updating, and delet-

ing data within the underlying IMS data base. The second

approach, the Link algorithm, forms relations by making each

record and set distinct relations. The resulting universal

(relational) data base is in 3NF but has a larger number of

relations than are necessary.

F I AT-O

Figure 42. IMS Version of Medical Data Base (9:149)

Parent Ke Algorithm.

1. Convert all IMS segments to a relational format.

125

Specific example:

HOSPITAL

Hospcode = name - address = phone# - #ofbeds

Mapping status after step 1:

= HOSPITAL = = WARD u = LAB - - DOCTOR

= STAFF = PATIENT - = PAT-ATTD - = TEST =

= DIAGNOS = = ATT-DOC =

2. All children segments/relations add the primary key
of their parents.

Specific example:

WARD

- Wardcode = Hospcode = name = #ofbeds =

Mapping status after step 2:

- -HOSPITAL = = WARD =HC = = LAB =HC =

=STAFF =WC =PATIENT WC=

- DIAGNOS = REG# = = ATT-DOC = REG# =

= DOCTOR = HG = = PAT-ATTD = DOC# =

= TEST = LAB# = WC2

126

S.

" 3. Remove any redundant attributes within a relation.

4. Remove any redundant relations within the data base.
These relations are marked as alternate names.

Mapping status after step 4:

=HOSPITAL =WARD HC =LAB HC=

- STAFF - WC - - PATIENT = WC -

DOCTOR-PATIENT
a DIAGNOS REG# -

= DOC# - REG# =

=-- --- * ATT-DOC

a DOCTOR - HC - * PAT-ATTD

- TEST - REG# a WC -

5. Examine all relations/segments according to the IMS
sequence number. If any relation contains added
attributes which are paired in a relation/segment
with a lower sequence number, then remove the
attribute which originated from the higher sequence
number.

This step removes the attribute WC from TEST. The
final resulting mapping is as in step 4 but with WC
removed from TEST.

Link Mapping Algorithm.

1. Convert all IMS segments to relational format.

See step #1 in Parent Key algorithm for mapping
status after this step.

2. Convert all Parent-Child relationships to relational
i. format.

127

:: , : i ::~~~~................7:~,............ . , .-. , -....... • " *--' : .- -'....-,-- ."..

Mapping status after step 2:

= LAB# =HC = =DOC# -REG#= = TC =REG# =

=HC =WC= =EMPL# =WC= =DC= REG#=

= DOC# =HC = =REG# =WC = =REG#-=DOC# =

3. Remove redundant relations and mark remaining rep-

resentitive as alternate names.

Mapping status after step 3:

* Alternate Name

LAB# = HC = =DOC# =REG#= =TC=REG#=

HC =WC= =EMPL# =WC= =DC =REG#=

= DOC# =HC = = REG# =WC =

4. Remove any relations consisting of only one

attribute.

This removes ATT-DOC and PAT-ATTD.

Final result of Link Algorithm:

= HOSPITAL = = WARD f = LAB = = DOCTOR =

STAFF - = PATIENT = = DIAGNOS = TEST =

=LAB# =HC= =DOC# =REG#= =TC =REG#=

128

.

.HC WC n EMPL# WC nDC REG#n

a DOC# a HC a REG# -WC-

Universal DDL to IMS (Parent-Key) DDL. This section

describes the algorithm to recapture the IMS DDL from the

Universal DDL representation of it generated by the Parent-

Key algorithm.

1. Examine all relations and find the relation with no
foreign keys. That relation is the root segment.

Mapping status after step 1:

HOSTAL

2. Examine each relation which has the primary key of
the root (HOSPITAL) as a foreign key. These rel-
become the children segments of the root. Only con-
sider relations with one foreign key.

Mapping status after step 2:

WARDl DOCTOR l

3. Repeat step #2 recursively on the children segments.
Only consider relations with one foreign key.

Mapping status after step 3:

IL wABB DOCTORI

129

. .

4. Now examine all alternate names relations. Design-
ate each foreign key as fl, f2, etc., and any other
attributes collectively as A. Take each foreign key
determine what segment, S, has that key as the pri-
mary key. Form the other foreign keys and A into a
segment and make that new segment a child segment of
S. Repeat this for each foreign key.

Final mapping status:

Comparison of the above IMS structure and the one used

as input to the Parent-Key algorithm proves that the original

IMS structure can be recaptured.

Universal DDL to IMS (Link) DDL. This section shows

that the universal representation of the IMS data base gen-

erated by the Link algorithm can be recaptured (i. e. a two

mapping exists).

1. Form all relations consisting of keys and attributes
into IMS segments. Do not consider alternate names
relations.

2. Using the IMS sequence numbers contained within the
data dictionary and the relations consisting of only
two keys to connect the segments created in step #1
into the correct heirarchical structure. This is
done by examine a relation consisting of two keys
and determine what segments have those keys as pri-
mary keys. Whichever segment has a lower sequence
number is the parent segment, the other the child
segment. Do not consider alternate names relations.

130

.............................

Mapping status after step 2:

I STAFI 1PATIENT I

|DI4(,NOSIS 1

3. Now examine all alternate names relations. Design-
ate each foreign key as fl, f2, etc., and any other
attributes collectively as A. Take each foreign key
determine what segment, S, has that key as the pri-
mary key. Form the other foreign keys and A into a
segment and make that new segment a child segment of
S. Repeat this for each foreign key.

Mapping status after step 3:

HOSPTL

WIARDI DTTCTOC
U [PATIENT P AT- A TTD

Comparison of the above IMS structure and the one used

as input to the Link algorithm proves that the original IMS

structure can be recaptured.

This subsection has presented two algorithms to this

particular mapping. The Link mapping algorithm is simpler

131

Ia"
I-

and in 3NF. The Parent-Key is more complicated, is only in

1NF, but does capture more explicitly some of the underlying

data constraints. By doing so, the Parent-Key assists the

user and system in handling system updates, insertions, and

deletions. Therefore, this thesis chooses the Parent-Key

algorithm as superior.

* Integration of UDDL Mappings

The concept of the integration of the various individual

UDDL mappings takes those relatively (?) simple mappings and

complicates them. It is important to note several points

* about the integration process:

1. It will be a manual process performed by the UDBAC.
2. It will require an understanding of the underlying

physical data bases.
*3. It will require a good understanding of the purpose

or requirements of the universal data base to be
created from the UDDL mappings.

UDB Relations. It may occur in the UDB that when inte-

grating several like data bases that there may not be in-

trinsic relations or attributes within the underlying data

bases which will distinguish the information within them.

For example, there is no direct attribute or relation in the

* . medical data base example which indicates in what city a

Hospital is located, or in what city a Patient lives, etc.

There are several different solutions to this problem. The

first is to modify the underlying data bases to distinguish

these physical locations. This type of modification will

most likely not be as disrupting as other types previously

132

4C

mentioned. It should be noted that it may prove very

desirable to perform this type of modification. This is be-

cause it will facilitate the movement of data bases from one

system to another (i. e. the personnel information for Wright

Patterson Air Force Base might be moved to Scott Air Force

Base where all personnel information for the midwest is being

moved). Another possible approach is to create a new rela-

tion at the UDB level, in the UDBAC computer, to reflect any

location information about a data base. This is easier from

the user's point of view but may cause more network traffic

and, of course, must now be maintained. Then again the UDB

could just be treated as another relational system on the net-

work. Both of these solutions are viable ones, the exact one

chosen depends on the requirements of the particular data

base(s) in question.

UDDL Integration Methodology. There is no well defined

algorithm or process for the integration process. Like the

design of a data base, it is a creative process with too many

possibilities to be automated. But as with data base de-

sign, computer-aided tools will greatly improve the efficien-

cy of the process. Although there is no set procedure, a few

general guidelines and examples can be established. It is

important to note that some situations may arise which are

not readily solved and may require such things as LDBMS re-

structuring and so forth.

Before going over the integration of the medical data

133

k

base used throughout this thesis, a few generic examples are

outlined below. Examples deal with only two relations but

they can be generalized to more than two.

1. Two relations, one with attributes A and B; and the
other with attributes A and C.

This particular example, discussed earlier, can be
be solved by either placing all three attributes
together (A B C) or leaving them separate as two
relations.

2. Two relations, one with attributes A, B, C, D; and
one with attributes A, B, C.

Another example already discussed, this can be
solved in one of two ways also. The first is to
have one relation with A, B, C, and D. The second
is to have one relation A, B, C and another (assum-

40 ing that A is the key) A and D. The choice depends
on the actual attributes involved.

3. A final example involves three relations, one with
A, B, C; one with A, B; and a third with C, D, E.

This one is solved with one relation with A, B,
and C; and one relation with C, D, and E.

Integration Example. This section traces through the

integration that took place to produce the 11DB version of the

medical data base in Appendix G. The example takes the in-

dividual mappings derived for each of the three different ver-

sions of the data base and attempts to integrate them. It is

important to note that this particular example deals with

data bases dealing with exactly the same type of information

thus making the integration tougher. The reader will need to

* refer to Appendices D, E, F, and G.

1. The first thing to do is to integrate those rela-
tions which are identical. Alternate names are
combined as well. Any modifications refer to the
universal representations, not the actual under-

134

61

lying structures.

Effected relations:

HOSPITAL: integrated without problem.

WARD: integrated but unique association clause

kept. A ward can't be with more than one hospital
anyway so there are no consequences for System R
or IMS DBMSs.

DOCTOR PATIENT: Combination of a normal relation
from System R and two alternate name relations from

DBTG and the IMS versions.

DIAGNOSIS: Integrated with no problem.

2. Now each remaining relations must be examined one at
a time.

0 HOSPITAL-LAB: The System R and DBTG versions prove
identical (aside from alternate names for DBTG ver-
sion). Examining the IMS version, it is noted that
the LAB relations are all identical except that the
IMS version has Hospital code added. First impulse
is to remove Hospital code from LAB along with Lab#

to form the third HOSPITAL-LAB. However, Hospital
code is needed in the IMS LAB to indicate that a
lab must be assigned to a hospital before it can
exist within the data base. Therefore, the reverse
is done. HOSPITAL-LAB is removed, and Hospital code
is added to the System R and DBTG versions of LAB
(the alternate names from the DBTG version is retain-
ed as wpll).

LAB: see HOSPITAL-LAB.

STAFF: The System R and DBTG versions are identi-

cal and are combined. The IMS version is missing
Hospital code. Examine the IMS physical structure
(Appendix F), it is noted that Hospital code (for

insertions) is required and would most likely be
be used in any queries anyway. Therefore, Hospital
code is added to the IMS version and it is combined
also.

TEST: The System R and DBTG versions are identical
and are integrated. The IMS version has an addition-
al attribute, Ward code. Examining the IMS physical
structure, it is noted that while the Ward code
would be useful, most queries will be based on the

135

;0

Registration# and/or Test code. Therefore, Ward
code is deleted from the IMS version and it is corn

DOCTOR: The IMS and System R versions are identical
and are combined. The DBTG version lacks the attrib-
ute, Hospital code. Examining the DBTG version, it
is noted that an extra relation, STAFF DOCTORS, pro-
vides the necessary connection. Therefore, STAFF
DOCTORS is deleted and Hospital code added to the
DBTG version and combined with the other two.

PATIENT: All three versions in this situation are
unique. Examining the IMS and DBTG versions, both
have bed# but the IMS version has Ward code also.
It is further noted, that the relation OCCUPANCY
(DBTG version provides the necessary connection.
Therefore, these two are combined. Now considering
the System R version, it is determined that placing
(physically or logically) the attribute, bed#, into
the System R version of PATIENT or not, is a matter
of choice. Therefore, it is added to the System R
version and removed from the System R version of
OCCUPANCY. It is also noted that the OCCUPANCY
information is present in all three versions, just
in a different manner. Due to the need to portray
underlying restrictions in the IMS and DBTG versions
of the data base, we choose to implement the IMS!
DBTC version. Therefore, Ward code is added to
the System R version of PATIENT and OCCUPANCY is
deleted.

HOSPITAL LOCATION: This relation is created by the
UDBAC to distinguish the information between the
hospitals in the different data bases. It is com-
posed of the Hospital code and a Location code.

LAB LOCATION: This relation is created by the UDBAC
to distinguish the information about the labs in the
different data bases. It is composed of the Lab#
and a Location code.

PATIENT LOCATION: This relation is created by the
UDBAC to distinguish the information about the pat-
ients in the different data bases. It is composed
of the Registration# and a Location code.

136

Conclusion

(In this chapter, many of the more complex and fascina-

ting issues of the UDB have been briefly addressed. The com-

plete and successful resolution of the issues and problems

raised in this chapter will be a must for the actual imple-

mentation of the UDB.

137

r I T I I 1 K

Chapter VII. The Universal Data Definition Language,

the Universal Data Manipulation Language,

and the Data Dictionary

Overview

The purpose of this chapter is to describe the syntax of

the UDDL and UDML, and the composition of the Data Diction-

ary. The UDDL is based on System R as described in Date(3),

while the UDML is based on Quest, a language designed and de-

veloped by Housel (5). Both the UDDL and UDML are described

in a BNF format with the UDDL being described first. Com-

ments are inserted at certain points for clarafication. They

are identified by parenthesis and asterisks, (* comments *).

Bold indicates an entity within the system, not a part of the

BNF syntax. The Composition of the Data Dictionary is de-

scribed in a relational manner. The purpose is to show what

information the Data Dictionary must contain in order to per-

form DDL mappings and DML translations.

The Universal Data Definition Language

The Universal Data Definition Language specifies the

relational structures that the distributed users will see as

the UDB. The approach taken in designing this language was

to first design a powerful DDL for a standard relational

system and then modify it to handle the special cases and

problems that would arise in the UDB environment. The

language is described in two parts, the general definitions

138

0o

° ° .. -.

* - --. .. y W .$Vo - - -

and the command definitions.

General Definitions. The following definitions define

general purpose entities used in describing the actual

commands and capabilities of the UDDL. These definitions are

presented here because of their frequent use and/or low level

nature.

alphabetic-character .:-

name-type alphabetic-character [name-type].
site-name name-type.
new-site-name ::= name-type.
new-field-type-id name-type.
new-relation-name ::- name-type.

* site-id ::= name-type.
new-function-name ::= name-type.
database-name ::= name-type.
old-database-name ::= name-type.
new-database-name ::= name-type.
field-type-id ::= name-type.
field-name ::= name-type.
relation-name name-type.
function-name name-type.
temp-rel-name name-type.
attribute-name name-type.
attribute-identifier ::= temp-rel-name.attribute-name.

number-character 0 I 1 I 2 I • • • I 9 I"

number ::= number-character [number].
real-field-length ::= number.
right-decimal-places ::= number.
field-length ::= number.

decimal-specification

real-field-length.right-decimal-places.

Command Definitions. This definition subsection des-

cribes the powers and capabilities of the UDDL. It should be

noted that the complete capabilities of the UDDL (create, ex-

pand, rename, delete) will not necessarily be user-permitted

139

6!. . . : : - • i - , ,--i .i - -" ? / ::: .::. . :, ii ii - - ., i: , :i

operations. The primary purpose of the UDDL is to inform the

users and system what comprises the universal view of the

data base. If the users are permitted full capability, this

could cause security and integrity problems. Imagine a user

deleting a data base within the UDB which is comprised of

only portions of several other physical data bases. It is

for this reason that full UDDL capability is limited to the

UDBAC.

Another point requiring discussion is the alternate

names definition. This section of a universal relation de-

scription is used to inform the user that a given universal

relation, for example:

DOCTOR-PATIENT

= DOC# = REG# =

is physically established in such a manner that to derive

certain information, it would be much more efficient for the

system if the user were to use a particular alternate name.

The heirarchical algorithms in chapter 6 provide a good

example. A comment follows each alternate name to convey to

the user the type of information that could best be gained

through this alternate name.

(Create Data Base database-name
([domain-specification [domain-specification] I
relation-specification [relation-specification]
user-defined-function [user-defined-function]))

(Expand Data Base database-name
([domain-specification (domain-specification]]

[relation-specification [relation-specification]]
user-defined-function [user-defined-function]]))

140

'-" " -'. ,'"" "'."• " " .- -. -'."'.'.". "-.......",".."......,............-,......."...",."...-..

(Rename Data Base (rename-database-entry
I [, rename-database-entry]))

(Delete Data Base database-name
[(delete-database-entry [, delete-database-entry]))

domain-specification

Domain field-type-id field-type
[(field-length [, NONULL])]

field-type

Integer I Real I Small Integer I Character I
Character Var

relation-specification :

Create relation-name
[unique-association-specification]
[alternate-name-specification]
(field-defn [, field-defn I
Keys are field-name [, field-name])

unique-association-specification

Unique Association betveen
attribute-identifier and attribute-identifier

alternate-name-specification

Alternate names are relation-name comment-field
[, alternate-name-specification]

comment-field

(* alphabetic-character [alphabetic-character] *)

field-defn

[Unique] field-name: field-type-id I
field-type [(field-length [, NONULL])]

user-defined function *:=

User [Temporary] Function function-name
[Input Arguments are (arg-list: field-defn)
r Output Arguments are (arg-list)
command-specification (* see UDML *)

End Function

141
Ii

arg-list ::-

attribute-name relation-name database-name

[, arg-list]

rename-database-entry

database-name new-database-name
field-type-id new-field-type-id
relation-name new-relation-name
function-name new-function-name

delete-database-entry ::=

(* nothing - indicates entire data base *)
relation-name I
function-name

UDB Medical Data Base (partial) Example:

(Create Data Base MEDICAL DATA BASE

Domain char-15 Character (15)
Domain char-20 Character (20)
Domain code-type Integer (NONULL)
Domain #type Integer (NONULL)
Domain small-int Small Integer
Domain var-string Character Var

Create HOSPITAL (
Unique Hospital code: code-type,
name: char-15,
address: char-20,
phone#: #type,
of beds (Small Integer),
Keys are Hospital code)

Create LAB (
Unique Lab#: #type,
Hospital code: code-type,
name: char-20,
address: char-20,
phone#: #type,
Keys are Lab#)

U

142

....

Create PATIENT-DOCTOR
-* Alternate names are ATTENDING DOCTOR

(* Treat as normal relation *)

Alternate names are PAT-ATTD
(* List of patients a given doctor is seeing *)

Alternate names are PATIENTS ATTENDED
(* List of patients a given doctor is seeing *)

Alternate names are ATT-DOC
(* List of doctors attending given patient *)

Alternate names are DOCTORS ATTENDING
(* List of doctors attending given patient *)

Unique Doctor#: #type,
Unique Registration#: #type,
Keys are All)

(Expand Data Base MEDICAL DATA BASE
(User Function LABS-SERVING-A-HOSPITAL

Input Arguments are (hosp-name: code-type)
Output Arguments are (lab-name: #type)
Retrieve
From LAB known by L,

HOSPITAL-LAB known by HL,
HOSPITAL known by H,

(Where hosp-name = H.name and
H.Hospital code = HL.Hospital code and
L.Lab# = HL.Lab#

(Return (L.name Ordered by Ascending L.name))
END FUNCTION)

Universal Data Manipulation Language

The universal data manipulation language (UDML) speci-

fies the commands that the user and/or UDBAC may execute

against the UDB. The approach taken in designing the UDML

was to first design a powerful relational DML and then modify

it to handle the special cases and problems of the UDB envi-

ronment. It should be noted that the embedded DDL (as well

as deletion and update) capability is limited to the UDBAC.

The language is described in two sections: the general

definitions section and the command definitions section.

143

: ' : i " ', " .° - ,' " ' - . .' .- .9 '- " ' -f- " " '" " ' '

General Definitions. The following definitions are for

the general purpose entities used in describing the commands

and capabilities of the UDML. They are presented here be-

cause of their frequent use and low level nature.

alphabetic-character

A IB lzial .. I # -I I.

name-type alphabetic-character [name-type].
site-name ::= name-type.
site-id ::= name-type.
file-name ::= name-type.
field-name name-type.
field-list ::= field-name [, field-list]
view-name ::= name-type.
old-view-name name-type.
new-view-name name-type.
database-name name-type.
relation-name name-type.
function-name name-type.
temp-rel-name name-type.
attribute-name ::= name-type.
attribute-identifier ::= temp-rel-name.attribute-name.

number-character 0 I 1 I 2 1 • • I 9

number ::= number-character [number].
real-field-length ::= number.
right-decimal-places ::= number.
field-length ::= number.

decimal-specification ::=

real-field-length.right-decimal-places.

constant-value ::= number I name-type.
label ::= number.

system-function MAX I MIN I SUM I COUNT I AVG I UNIQUE
assign-operator ::- :=.
boolean-operator ::= < 1.> I <- >= I = AND I OR I XOR.
mathematical-operator ::= + - / I *I *.

operator ::=

assign-operator I boolean-operator
mathematical operator

144

p. I A L..&~~~j1 :::~~> :>N.. - fi.-

Command Definitions. The following definitions describe

the powers and capabilities of the UDML.

database-command

(Access Data Base database-name
[view-specification C view-specification]
[command-specification [command-specification]]

view-specification ::=

(Define View (Temporary] view-name (field-list
From relation-reference [, relation-reference
As Where selection-criteria) I

Delete View (view-name) I

Rename View (old-view-name new-view-name)

selection-criteria =

((command-specification I
criteria-specification I
function-call)

[operator selection-criteria])

function-call ::=

system-function ((selection-criteria I
attribute-identifier)

[operator target-value])

user-function ((input-arg-list) (output-arg-list))

input-arg-list ::=

input-attribute [, input-attribute]

input-attribute ::=

constant-value attribute-identifier I
database-name relation-name

output-arg-list

output-attribute [, output-attribute]

output-attribute

database-name I attribute-identifier I relation-name

145

criteria-specification ::=

attribute-identifier operator target-value

target-value ::=

constant-value I function-specification
command-specification I attribute-identifier

relation-reference :

relation-name known by temp-rel-name I
relation-name (temp-rel-name) I
temp-rel-name known by temp-rel-name [; temp-rel-name

command-specification

command-word
From relation-reference [, relation-reference
Where selection-criteria
[action-specification])

command-word ::- Retrieve I Update I Delete.

action-specification ::=

display-command I
case-command I
return-command I
to-command I
command-specification I
assignment-operator I
create-database-operation (*see UDDL *

[action-specification]

display-command ::=

(Display [File (file-name)]
(display-stmt [display]))

display-stmt

display-line [display-line)

display-line ::=

[Unique] [label:] component-expression

[, component-expression
[Ordered by order-criteria]

146

6

component-expression

attribute-identifier
criteria-specification
selection-criteria I
format-specification

format-specification ::-

number I LF (* line feed *) I R (* return *)
B (* blanks *)
[, format-specification format-specification

order-criteria ::=

order-type attribute-identifier
[, order-criteria]

case-command

(Case
case-specification(-l): case-action(-1)
case-specification(-2): case-action(-2)

case-specification(-n): case-action(-n)

[Otherwise: case-action(-n+l)])

case-specification :

attribute-identifier operator constant-value
attribute-identifier operator target-value
selection-criteria

case-action ::= command-specification

return-command

(Return (return-line [return-line]
q Ordered by order-type order-criteria]))

return-line :

[Unique] [label:] component-expression
[, component-expression

order-type ::= Ascending I Descending

147

to-command ::=

" To attribute-identifier assign-operator new-value

To attribute-identifier assign-operator target-value
To target-value assign-operator new-value I
To target-value assign-operator target-value)

direct-reference ::=

source-value assign-operator target-value

source-value -

attribute-identifier I program-variable

program-variable ::= name-type.

create-database-operaton

database-specification

relation-specificaton
domain-specification I
user-defined-function

UMDL Examples

This section of Chapter 7 presents sample queries

illustrating some of the various UDML commands. The reader

should refer to Appendix G.

1. List all hospitals and their addresses.

(Retrieve
From HOSPITAL known by H,
(Return (H.name, H.address)))

2' List all doctors serving in hospitals with over 250

beds.

Retrieve
From HOSPITAL known by H,

DOCTOR known by D,
(Where H.# of beds > 250 and

H.Hospital code = D.Hospital code

(Return (D.name))))

148

3. List all doctors serving in hospitals in Tollersville.

(Retrieve
From HOSPITAL known by H,

DOCTOR known by D,
HOSPITAL LOCATION known by HL,
(Where H.Hospital code = D.Hospital code

and HL.code = "TLV"
(Return (D.name))))

4. List all doctors who attend over 15 patients and list
those patients under each doctor's name.

(Retrieve
From DOCTORS known by D,

DOCTOR-PATIENT known by DP,
(Where COUNT (D.Doctor# = DP.Doctor#) > 15
Return (D.name, 2RLF,
(Retrieve
From PATIENT known by P,
(Where D.Doctor# = DP.Doctor# and
P.Registration# - DP.Registration#
(Return (P.name ordered by Ascending P.name,

2RLF))))))

5. Add a 5% pay raise to all staff employees earning over
$16,000 and a 10% raise to those earning under $16,000.
E shift employees earn an additional 2% pay raise.

(Update
From STAFF known by S,

(Case
S.salary > 16000:

(Case
S.shift = 'E': S.salary := S.salary * 1.07,
Otherwise: S.salary := S.salary * 1.05)

Otherwise:
(Case

S.shift = 'E': S.salary := S.salary * 1.12,
Otherwise: S.salary := S.salary * 1.1)

Data Dictionary

A data dictionary is basically a collection of informa-

tion about information. It is often used to describe enti-

ties, activities, processes, and so forth in a system. In

the data base context, a data dictionary describes the differ-

149

0

ent entities within the data base. It describes the data

bases within a system, what relations (records/segments) are

contained within each data base, what attributes each rela-

tion has, and so forth. In describing each attribute, the

data dictionary would indicate what type an attribute is

(integer, character, etc.), how many of that type it has (15

characters) if applicable, if the attribute is a key, etc.

In the UDB context, the data dictionary takes on even greater

responsibility as it must not only describe the contents of

the data bases in the UDB but must also describe the data

bases. The UDB data dictionary contents described below are

concerned with providing sufficient information to perform

the UDDL mappings.

Key. The following abbreviations are used in describing

the data dictionary.

id - identification number or character string
uatt - universal attribute
urel - universal relation
ufcn - universal function
locn - location (used with ufcn or pfcn to indicate

where actual code of ufcn stored at LDBMS)
udom - universal domain
udb - universal data base
ualt - universal alternate (relation) name
oatt - owner attribute
matt - member attribute (matt uniquely assigned to oatt)
pent - physical entity (pseg, prec, prel)
patt - physical attribute
prel - physical relation
pseg - physical segment
prec - physical record

0 pfcn - physical function
pdb - physical data base
pdom - physcial domain
struct - boolean, does pset in question have

structural set selection.
mid - machine id (indicates type of computer DBMS on)

150

L ..

addr - network address of a DBMS
mtype - model type (IMS, DBTG, SYSR)
sid - site id (identifies physical location)
pent - composite for prel, pseg, and prec
seq# - sequence number (IMS)
pfcn - physical function (function defined at LDBMS)
type - attribute type (integer, real, etc)
nonull - is character not allowed to be NULL
pset - DBTG set
own id - DBTG owner record (own id = pseg id)
mem id - DBTG member record (mem id = pseg id)
setsel - set selection (DBTG)
len - length (as in number of characters, etc.)
ret - retention (DBTG)
ins - insertion (DBTG)
par - parent (IMS-same as a pseg)
chd - child (IMS-same as pseg)
rep - replication code (F-fully, P-partially, N-none)
ones- one site (is data base or relation exclusively at

one data base or site. Y-Yes, N-No)

UDB UDDL Data Dictionary.

UDB LIST UKEY LIST

= udb id = udb name = ones = = uatt id = urelid =

UATT LIST

= uatt id = uatt name = unique = rep =

UFCN LIST UDB-UREL LIST

= ufcn id = ufcn name = ufcn locn= = udb id = uatt id =

UREL LIST UREL-UATT

= urel id = urel name = rep = ones = = urel id = uatt id =

UDOM LIST

= udom id = udom name = type - len = nonull =

UNIQUE ASSOCIATION LIST SITE-UDB

urel id = oatt id = matt id = = udb id = sid =

151

6

, -ALTERNATE RELATION LIST DOMAIN-UDB

- urel id - pset id a ualt name - a udom id udb id a

SITE LIST UFCN INPUT ARGUMENTS

- sid - site name - site addr a a ufcn id s uatt id

UFCN-UDB

= udb id a ufcn id a

MACHINE LIST UFCN OUTPUT ARGUMENTS

mid = machine name a other info a a ufcn id a uatt id

PREL LIST PSEG LIST

a prel id a prel name a a pseg id a pseg name a pseg seq# a

PREC LIST FATT LIST

a prec id a prec name = a patt id a patt name a unique a

PSET LIST

a pset id a pset name a own id a mem id a setsel patt =

PSET LIST (cont)

a ret id a ins id a order id a struct -

ORDER LIST RETENTION LIST

order id a order type a a ret id a ret name

INSERTION LIST PFCN LIST

a ins id a ins name - a pfcn id a pfcn locna pdb id =

132

°A. A- t " *- -I. • . c "C,"'- .,° " . , tt . "' " .- -. " l- C C r. r . , ,, 1 . .L - , -

PDOM LIST

= pdom id = pdom name = type = len = nonull -

SITE MODELS SITE MACHINES PDB MODELS

= sid = mtype = = sid - mid = = pdb id = mtype =

PDB LIST PDB MACHINES

= pdb id = pdb name = = pdb id = mid =

PATT-PENT PKEY-PDB

= pent id = patt id = = patt id = pent id

PENT-PDB PDB-PDOM LIST

pent id = pdb id = = pdb id - pdom id =

PATT-PDOM LIST PARENT-CHILD

= patt id = pdom id = = par id = chd id =
- - - - - - - - - - - - -

PFCN INPUT ARGUMENTS PFCN OUTPUT ARGUMENTS

= pfcn id = patt id = = pfcn id = patt id =

153

,'

VIII. Results and Conclusions

Introduction

In the preceding seven chapters this thesis has analyzed

the problem of trying to permit the effective communication

between heterogeneous DBMSs in a distributed environment.

During this analysis many issues and problems were raised,

discussed, and, if possible, solved or a possible approach

indicated. This chapter serves to discuss a few odd issues

of the UDB and to note what was accomplished and what needs

to be accomplished.

Overview

The first section addresses some of the powers and

responsibilities of the UDBAC. The second section discusses

the relational model actually used for the UDM. The third

section summarizes what was accomplished in this thesis. The

fourth section summarizes known deficiencies with the UDB as

presented by this thesis. The fifth section lists possible

follow-on efforts and the sixth section concludes the chap-

ter and this thesis.

The Powers and Responsibilities of the UDBAC

The role of the UDBAC in the UDB cannot be underesti-

mated. The UDBAC will have the responsibility of formulating

policies concerning old data base modification, new data base

formation, security, deletions, and updates. The UIDBAG will

also have to enforce these policies. It will be responsible

154

for integrating the individual universal representations into

one universal view. It is important to note that the UDBAC

will have to monitor and control dynamic changes in the

underlying data bases. It is difficult to envision at this

time that users will be able to make "real time" changes

(adding/deleting data bases, structures within a data base,

etc.) to their the local data bases. Most likely, the local

DBAs for an LDBMS will notify the UDBAC of a new data base

being brought up, or a old one deleted, and so forth and the

UDBAC will prepare the UDB to accept the new change. It is

important to note that not every data base (or portion of a

data base) at a local site will necessarily be included in

the UDB.

An Augmented Relational Model

As the UDB system was analyzed and developed through

this thesis, it became obvious that the relational model, as

it stood, would require some modifications to fully satisfy

the UDB requirements. The reason for these modifications

come from attempting to map nonrelational structures and

operations into a relational model. It is thought that it

will require even further modifications after the DML require-

ments are fully analyzed. The present modifications, rela-

tively minor, do not change the basic nature of the relation-

al model, they merely augment it. It is suggested that the

additional integrity constraints suggested by Date (3) be

4 fully supported. The following are characteristics of the

155

4.

the augmented relational model used:

1. Requires only INF.

2. Alternate names construct to handle DBTG struc-
tural sets.

3. Unique associations clause to alert users to a DBTG
fixed retention set.

The following addtional characteristics are anticipated:

1. Support of Domain Integrity (see p. 77, Chapter 4).

2. Support of Immediate Record State Constraint (see p.
77, Chapter 4).

3. Support of Immediate Record Transition Constraint
(see p. 77, Chapter 4).

4. Constraint or construct to support DBTG Automatic
insertion.

5. Constraint or construct to support DBTG Fixed Re-
tention.

Accomplishments

Although this thesis has not implemented any part of the

UDB nor has it really fully investigated all of the issues

raised, it does provide a good starting point for further in-

* vestigation. The following list indicates what was accom-

plished in this thesis:

1. Literature search of current research into the area

of a UDM and/or UDB.

2. An analysis of the requirements for a UDB.

3. The selection of a UDM.

4. An examination of the UDDL mapping issues.

5. Syntax specification for a UDML and UDDL.

15

.i 156

S

Universal Data Model Deficiencies

Although the Relational model was chosen as the best

model, of those examined, it is obvious that the UDM, and

UDB, as presented in this thesis have several deficiencies or

otherwise undesired qualities. It is hoped that these unde-

sired qualities will be eliminated by the time the UDB is

actually implemented. The following list summarizes those

deficiencies:

1. The UDB is restricted to dealing with one particular
implementation of each of the three different
models.

2. Each of those three particular implementations (IMS,
DBTG, and System R) have "unnatural" constraints
imposed upon them by the UDB.

-.-. 3. The users of the UDB are forced to work in the UDML.

4. Using the UDB may require modifications to the under-
lying data bases.

5. DML mappings have not been examined to insure that
they can be completely supported.

6. The DDL mappings examined have not been fully tested
to insure that they are complete and accurate.

7. The relational model used in this thesis could,
perhaps, be augmented further to perform better.
This reevaluation should be done after the DML re-
quirements have been closely examined.

Follow-on Efforts

As has been pointed out in this thesis, this is an

0 initial examination of the UDB problem. In this thesis, the

UDB problem has been analyzed and a direction in which to go

decided upon. However, there is a great deal of research yet

1 10 to be done before the UDB can come even close to a reality.

157

,. .- ..- ... :. ,,... .- -. - .,. .- .. ,.. , - . -....:-
- *

The following is a list of possible follow-on efforts that

need to be done:

1. Study and resolve the DDL DBTG-to-Relational mapping
problem with no, or at least a minimal set of, limit-
tions.

2. Study and resolve the DDL IMS-to-Relational mapping
problem with no, or at least a minimal set of, limit-
ations.

3. Study and resolve the DML DBTG-to-Relationai mapping
problem with no, or at least a minimal set of, limit-
ations.

4. Study and resolve the DML IMS-to-Relational mapping
problem with no, or at least a minimal set of, limit-
ations.

5. Analyze the UDBA responsibilities and design and
implement CAD tools for the UDBA.

6. Design and Implement a complete Universal Data Dic-
tionary for both DML and DDL mapping requirements.
Design and Implement a UDML parsing and optimizing
algorithm.

7. Study the ER model as a possible replacement for the
relational model as the UDM. Essentially, repeat
Chapters 5-7 of this thesis for the ER model, but
a more in-depth analysis.

Conclusion

Approximately 6 months and 250 pages ago, the goal at

the outset was to analyze the UDB problem and determine a

direction to take in solving that problem. Both of these

goals have been accomplished but a great deal of work remains

to be done, if it can. The complexities and scope of this

problem present a interesting challenge. The potential gain

to be derived from the UDB requires that a continued effort

into this area of research be made. Much of the challenge to

158

• -be faced by the computer scientists of the 80's and 90's will

be how to effectively and efficiently manipulate and process

the enormous quantities of information that the modern

society now requires to function.

7

9

159

."
"- . " 7' " ,' .' . # " ' , . ''," " . '' '''''" "' " " "" " "-" -

o ' -
" ' " "'"i" -. ,. 1, ,.. . .,....:- .

Appendix A:

Acronyms

AFIT - Air Force Institute of Technology

CODASYL - Conference on Data Systems Languages

DBA - Data Base Administrator

DBMS - Data Base Management System

DBTG - Data Base Task Group

DDBMS - Distributed Data Base Management System

DDL - Data Definition Language

DML - Data Manipulation Language

INF - First Normal Form

GDBMS - Global Data Base Management System

IMS - Information Management System

LDBMS - Local Data Base Management System

LDDL - Local Data Definition Language

LDML - Local Data Manipulation Language

SADT - Structured Analysis and Design Technique

2NF - Second Normal Form

3NF - Third Normal Form

UDB - Universal Data Base

UDBAC - Universal Data Base Administration Center

UDBMS - Universal Data Base Management System

UDDL - Universal Data Definition Language

UDL - Unified Database Language

UDM - Universal Data Model

UDML - Universal Data Manipulation Language

160

..

Appendix B:

Glossary of Terms

Action Specification - 1. part of a data base command which
specifies what is to done with any
data derived from the selection spec-
ification.

Alternate Key - 1. A candidate key that is not a primary
key.

Atomic - 1. indivisible 2. Cannot be broken down any
further. 3. "Nondecomposable so far as the system
is concerned (5:86)."

Attribute - 1. A piece of information (e.g. Name, Address,
SSN, etc.).

Candidate Key - 1. A set of attributes possessing a unique
identification property for a given tuple
(5:88).

Casual Data
Base User - 1. User who not particularly training the field

of computer science and/or data base. 2. a
layman.

Child node - 1. Generally used in terms of a heirarchical
structure (also known as tree structure) in
which elements of the structure are above or
below other elements of the structure. A child
node is a node or set of nodes immediately below
any given node. Good layman example is a family
tree where children of a given parent are listed
below that parent.

CODASYL - 1. Conference on Data Systems Languages which pro-
duced a "standard" for network data bases (see
DBTG).

Conceptual data base - 1. "an abstraction of the 'real
world' pertinent to an enterprise
(12:6)."

Data Base - 1. "Repository for stored data that is both
'integrated' and 'shared' (5:4)." 2. "Col-
lection of stored operational data used by the
application system of some particular enterprize
(5:7)."

161

Data Base Administrator - 1. Individual responsible for the
creation and maintenance of a data
base. 2. "Person (or group of
persons) responsible for overall
control of database system (5:25).

Data Base Instance - 1. The current contents of a data base.

Data Base Task Group - 1. A working committee under CODASYL
which developed the CODASYL "standard"

for network data bases called the DBTG
network data base.

Data Dictionary - 1. Essentially a data base which contains
data about data. 2. description of ob-
jects within a data base (5:27).

Data Independence - 1. Immunity of applications to change
in storage structure and access strategy
(5:13). 2. A change in how the data
is physically stored or accessed will not
require (significant) changes in any app-
lications.

Data Integrity - 1. Data Integrity is where the data within
a data base is accurate. An example of a
lack of integrity would be where there is
an "inconsistency between two entries repre-
senting the same 'fact' (5:11)."

Data Base
Management System - 1. A group of software that allows one

or more persons to use and/or modify the
contents of a data base (12:1).

Data Model - 1. A method of describing a database (12:18).
2. Consists of two elements. "A mathematical
notation for expressing data and relationships,
and operations on the data that serve to ex-
press queries and other manipulation of the data
(1 2 :18).

Distributed Data Base
Management System - 1. Data base that is not stored entire-

at one physical location but is actually
stored at several different locations
connected by a computer network.

Data Definition Language - 1. language used to describe the
objects within a data base. 2.
"High-level language enabling one

I

~162

2 77

to describe the conceptual data-
base in terms of a data model
(12:6) ."

Data Manipulation Language - 1. language used to manipulate
objects within a data base.

Domain - 1. a pool of values from which actual values of a
column (in a relational table) are drawn (5:65).

Foreign Key - 1. An attribute in a tuple for which it is not
a primary key for that relation or record, but
is for some other record or relation.

Global Data Base
Management System - 1. Another name for a distributed data

base management system.

Heterogeneous - 1. Different. 2. In data base context, in-
dicates that the data base systems in quest-
ion use different data models.

Homogeneous - 1. Same. 2. In data base context, indicates
that the data base systems in question use the
same data model.

IMS - 1. Information Management System developed by IBM
using a heirarchical model.

K - 1. Alphabetic representation for the number 2 raised to
tenth power. 2. 1024

Local Data Base
Management System - 1. Another name for a normal DBMS.

Used in the UDB context to distinguish
from a given local system and any DBMS
on the network.

Node - 1. In the data base context, a level or group of
records in a heirarchical or network data base.

Nonprocedural -1. In the data base context, describes a
language in which the user does not specify
how the data base is to access the desired
information. Instead the user specifies what

selection criteria are to be used in determin-
ing what data is to be returned.

Parent Node -1. Generally used in terms of a heirarchical
structure (also known as tree structure) in
in which elements of the structure are above or
below other elements of the structure. A par-

163

ent node is a node which is immediately above
any other given node. A good layman example is
a family tree where the parent(s) of any given
child(ren) would be listed above that child.

Primary Key - 1. An attribute whose distinct value will
uniquely identify a given tuple from all other
tuples in the relation or re,-ord.

Procedural - 1. In the data base context, describes a lang-
uage in which the user must specify how the data
base is to access the information the user de-
sires.

Query - 1. A question directed to a data base system
concerning the contents of that data base.

Response Time - 1. Time it takes to get a response or to
accomplish a computer function.

Root Node - 1. Generally used in terms of a heirarchical
structure (also known as tree structure) in
which elements of the structure are above or be-
low other elements of the structure. A root node
is the topmost node in the structure. It has no
parent node (see parent node).

Schema - 1. Another name for data base intension.

Selection Specification - 1. Part of a data base command
which specifies what information
is desired.

Structured Analysis
and Design Technique - 1. A software engineering technique

developed by a company called
Softech. SADT is used to develop
computer systems.

Tuple - 1. A term used in relational data bases to describe
a row in a relational table. 2. In the context of
other definitions contained within this glossary, it
will also refer a record which is a term used when
discussing network and/or heirarchical data bases.
This is used to avoid confusion when discussing a

* entry within a data base (tuple or record) and, for
instance, a DBTG Record type.

Universal Data Base - 1. Data base designed to allow the
communication, in a DDBMS network, of
heterogeneous DBMS.

164

.. Universal Data Base
Administration Center - 1. An organization whose function

is to perform the traditional DBA
functions for the UDB.

Universal Data Base
Management System - 1. The DBMS to be developed for the

UDB.

Universal Data Definition
Language - 1. DDL to be developed for the UDB.

' Universal Data Manipulation
Language - 1. DML to be developed for the UDB.

User - 1. A person, organization, or even another computer
which are using a given computer system.

View - 1. "an abstract model of a portion of the conceptual
data base (12:7)."

.6

165

Appendix C:

Medical Data Base Information

(Partial)

Source: The idea and a portion of the information presented
below are derived from Tsichritzis and Lochovsky's book, Data
Models (9).

New Salisbury: System R (relational)
Tollersville: CODASYL DBTG (network)
Bollington: IMS (heirarchical)

Hospital Information

HC Name Address Phone# #Beds

New Salisbury:
22 Doctors 45 Brunswick 923-5411 412
13 Central 333 Sherbourne 964-4264 502

45 Childrens 555 University 597-1500 845
18 General 101 College 595-3111 987

Tollersville:
10 Southside 15 Old Main 666-4556 234
54 Northside 342 N. Broad 333-9876 987
77 Memorial 22 E. Kaufman 333-1212 450

Bollington:
03 Kempton's 145 S. Main 345-2323 145
98 Mercy 12 N. Fairfield 543-3232 650
96 St. Paul's 187 S. Mattix 347-9999 234

Lab Information

Lab # Name Address Phone#

New Salisbury:
56 Alpha 18 Kipling 929-9611
84 Nucro 62 Lyons 368-9703
16 Atcon 14 Main 532-4453
42 Clini 55 King 447-6448

.4 Tollersville:
11 Huber 123 W. Fudenburg 567-3344
24 Sera 1829 W. Main 234-5678
76 Whitmer 3425 S. Dixie 239-1111
47 Nucro 62 Lyons, N. Sal. 368-9703

166

-- - . - . < I' -> - - < ".? <. >. - - Q --I< , -". i <" -i< • < -

0

Bollington:
90 Blue Rex 12 Altern 321-4418
34 Samaritan 478 Salem Dr. 789-4572

Hospital-Lab Information

New Salisbury: Tollersville: Bollington:
HC Lab# HC Lab# HC Lab#
22 56 10 11 03 90
22 84 54 76 98 34
13 16 77 11 98 90
18 56 77 24 96 90
45 16 77 76
18 84 10 24
18 16 54 24
13 42 10 47
18 42

Ward Information

HC Ward Code Name # of beds

New Salisbury:
22 1 Recovery 10
13 3 Intensive Care 21
22 6 Psychiatric 118
45 4 Cardiac 55
22 2 Maternity 34
13 6 Psychiatric 67
18 3 Intensive Care 10
45 1 Recovery 13
18 4 Cardiac 53
45 2 Maternity 24

Tollersville:
10 1 Recovery 50
10 3 Intensive Care 10
10 4 Cardiac 25
10 5 Cancer 60
54 2 Maternity 20
54 6 Psychiatric 15
77 5 Cancer 45

Bollington:
03 2 Maternity 20
98 4 Cardiac 25

0 98 5 Cancer 25
96 1 Recovery 10
96 2 Maternity 25
96 6 Psychiatric 15
96 4 Cardiac 35
03 1 Recovery 20

167

- - - ..------- --. ". - . --- ±-.- . &'.3 . ,- - , - ' :- :- .' - ' . . -, -. ' . " .. - , . . . : " : ': ' ..

Staff Information

HC Ward Code Employee# Name Duty Shift Salary

New Salisbury:
22 6 1009 Homes D. Nurse M 18500
13 6 3754 Delagi B. Nurse A 17400
22 6 8422 Bell G. Orderly M 12600
22 2 9901 Newport C. Intern M 17000
45 4 1280 Anderson R. Intern E 17000
22 1 6065 Ritchie G. Nurse E 20200
13 6 3106 Hughes J. Orderly A 13500
45 1 8526 Frank H. Nurse A 19400
18 4 6357 Karplus W. Intern M 18300
22 1 7379 Colony R. Nurse M 16300

Tollersville:
10 1 3264 McDay, R. Intern E 16500
54 6 8472 Stone, B. Nurse A 18500
77 5 8300 Turner, C. Intern M 17400
10 3 2321 Simpson, D. Nurse A 15000
54 2 1111 Griffth, D. Orderly M 19300
54 2 2321 Laud, C. Nurse A 20000
77 5 8598 Hall, D. Orderly M 17600
10 4 4587 Summer, S. Intern A 18000
77 5 3322 Jankus, L. Nurse A 21000
54 2 0034 Donnely, P. Orderly M 17100

Bollington:
03 2 8733 Bechey, M. Nurse M 15500
98 5 2318 Beail, S. Orderly A 16700
98 4 6667 Hagan, K. Intern E 16000
96 1 4348 Dixon, F. Intern A 15800
03 1 0934 Mesker, D. Orderly E 16700
98 5 0923 Hyre, K. Nurse M 17700
96 6 4567 Foy, C. Nurse A 18000
96 4 1129 Stead, R. Orderly E 17500

Doctor Information

HC Doctor# Name Specialty

New Salisbury:
45 607 Ashby W. Pediatrics
18 585 Miller G. Gynecology
22 453 Glass D. Pediatrics
13 435 Lee A. Cardiology
45 522 Adams C. Neu' logy
22 398 Best K. Urology
18 982 Russ J. Cardiology
22 386 Stone C. Psychiatry

168

Tollersville:
77 324 Pierce, J. Gynecology
10 542 Kermit, S. Urology
77 623 Bumble, F. Neurology
54 ii Morge, C. Surgery
54 607 Ashby, W. Pediatrics
10 110 Kildare, D. Surgery
54 652 Welby, M. Urology
77 342 Jackson, M. Gynecology

Bollington:
03 233 Adams, C. Neurology
98 454 Coyle, E. Psychiatry
96 213 Rup, D. Urology
96 310 Rore, T. Surgery
03 222 DePuso, J. Pediatrics
98 419 Sutten, P. Gynecology
03 100 Yast, E. Psychiatry
98 035 Tunwe, B. Surgery

Patient-Doctor Information

New Salisbury Tollersville Bollington

Doctor# REG# Doctor# REG# Doctor# REG#
607 74537 623 29388 035 88719
435 18004 iI 56473 310 10459
522 56473 342 36455 419 83425
386 36658 607 36455 100 64822
453 18004 542 29388 454 10959
982 24024 110 67743 419 83425
585 59076 324 46384 233 34221
398 74835 il 56473 035 69582
386 10995 623 38702 222 34221
607 64823

Patient Information

REG# Name Address Birthdate Sex SSN

New Salisbury:
63827 Rasky P. 60 Bathhurst Jun 1 1945 M 100973253
36658 Domb B. 55 Patina Apr 8 1954 M 660657471
74537 Gettel, B. 73 Dixie, Bl May 15 1967 F 473636363
64823 Fraser A. 11 Massey May 3 1960 F 985201776
74835 Bower E. 15 Ontario Oct 16 1933 M 654811767
56473 Walker, S. 21 Tatonie Ti Dec 1 1945 M 498562224
18004 Shiu W. 14 Ivy Jan 22 1916 F 914991452
59076 Miller G. 80 Lawton Jun 4 1971 F 611969044
24024 Fourie M. 40 Donora Jul 9 1966 F 321790059
10995 Lista M. 58 Olsen Nov 7 1963 M 980862482
39217 Birze H. 51 Dallas Aug 20 1958 M 740294390

16~169

F [} Tollersville:
24568 Rice D. 22 Hall Ave Oct 23 1935 F 485756383
46384 Brumbagh M. 42 Brown Dec 14 1940 F 371649500

". 38702 Neal R. ' 65 Halsey Nov 3 1949 F 380010217
74835 Bower, E. 15 Ontario NS Oct 16 1933 M 654811767
"*2388 Blakely, J. '3 W. Katz Nov 12 1961 M 034948575
3'4 5 Warden, D. 23Dinky St. Jun 17 1963 F 756646463
3546"7\ Donn, P. 89 W. Third Oct 9 1978 F 045958588
677W',, Stoen, W. 345 Willkie Aug 26 1964 M 746535222

56473 alker, S. 21 Tatonie Dec 1 1945 M 498562224

Bollington:*-.

10959 Kirk, 46 E. Prize Jun 11 1940 M 847666632
34221 Heller,N. 453 W. Virg Noy, 23 1965 F 317837444
56473 Walker, S.% 21 Tatonie TL Dec\1 1945 M 498562224
83425 Marvin, M. ',43 Indy St. Jul t 1960 F 946353755
74537 Gettel, B. 3Dixie May 15'"967 F 473636363
69582 Honna, P. 40 Penn St. Apr 20 142 F 973047057
37719 Riker, C. 511 Moyer Nov 01 181 M 168725816
68746 Dink, L. 216 losch Feb 04 193 M 581398427
88719 DeLong, P. 600 cenic May 29 1961 F 569712534

e 64822 Cruz, M. 214 Okgan Dec 25 1932 F 249463746

1

170

Appendix D:

Relational Version of Medical Data Base

[9:96-99]

HOSPITAL

Hospital coc* Noaw Address Phom# *I of bd
22 Doctors 45 Brunswick 1 923-5411 412 1
13 Central 333 Shetboume 964.4264 502
45 Childrens 555 University 597-1500 845
Is Generl 1I1 College 595.3111 987

WARD
Hfospital co*e Ward cojde vanme *of keds

22 1 Recovery 10
13 3 Intensive Care 21
22 6 PsychiatrW 118
45 4 Cardiac 55
22 2 Maternity 34
13 6 Psychiatric 67
18 3 Intensive Care 10
45 I Recovery 13
is 4 Cardiac 53

,-45 2 Maternity 24

_________ STAFF_____
Hospital code Ward code E o wt Name Duqy Shift Swery

22 6 1009 Holmes D. Nurse M 135(w)

1. 6 3754 Dclagi 0. Nurse AI 174w0
22 6 8422 Bell G. Orderly M 1 12600
22 2 9901 Newport C. Intern ,M I '7n0(N
45 4 1280 Anderson R. Intern E 1"000
22 I 6065 Ritchie G. Nurse E 20200
13 6 3106 1lughes J. Orderly 13500,
45 t 8526 Frank H. ,Nurse A 19400
I1 4 6357 Karplus W. Ine I MI 18300
22 1 7379 Colony R. Nurse I M 16300

DOCTOR
Hospital code] Dacw* N ame rSpeciahy I

45 607 A Ashby W. Pediatritz
Is 585 Miller G. Gynecology
22 453 GI-s 1). Pcdiatrics
13 435 Lee A. Cardiology
45 522 Adams C. Neurology
22 398 Best K. Urology
IT 912 Russ J. Cardiology
22 386 Stone C. Psychiatry I

171

'10

S- - -. ' "- .'

P.4 7VENVT
Rezsiuaon# Na, Iddvsz &n-h-dw Se, -SSN,

63827 Rasky P. 60 athurst Jun 1 1945 M M 0973253
Domb B. 55 Patina Apr 8 1954 M 660657471

64823 Fraser A. II Muassey May 31960 F 985,01776
73 wer E. 15 Ontario Oct 16 1933 1 65ILI 767
18004 Shiu W. 14 ivy Jan 22 1916 F 914991452
59076 Miller G. 80 Lawton Jun 4 1971 F 61 !%9044
24024 Fourie %. 40 Donora Jul 9 196 31790
10995 tM 58 Olsen Nov 7 2963 M 930862482
39210 iH. 51 Dallas Auga 20 12958 740294390
,8702 O NejR 65 Halse Nov 31949

L4B
:Lab# Namv 4ddmas Phione#
56 Alpha 18 Kipling 929.9631
-8 Nucro 62 Lyons 3689703

16 Aicon 14 MWn -532-4453

HOSPITAL LAB

/aspual code I1-ab#
22 56

22: 84
13 16
Is 56

45 26~
28 84

8 616
13 42
1S 42

CREATE TABLE HOSPTIAL:
Hospital code (INTEGER,NONULL),
Name (CHAR (15)),
Address (CHAR (20)),
Phone# (CHAR (7)),
of beds (SMALLINT)

CREATE TABLE HOSPITAL LAB:
Hospital code (INTEGER,NONULL),
Lab# (INTEGER,NONULL)

CREATE TABLE ATTENDING DOCTOR:
Doctor# (INTEGER,MONULL),
Registration# (INTEGER,NONULL)

172

r >:~~~~~~~~~~~~~~~~...-.-.• -....-.........-. ..-... -...---.-. - ..- .- --.---... ;,...... "< -- .-

CREATE TABLE OCCUPANCY:
Hospital code (INTEGER,NONULL),
Ward code (INTEGER,NONULL),
Registration# (INTEGER,NONULL),
Bed# (INTEGER,NONULL)

CREATE TABLE WARD:
Hospital code (INTEGER,NONULL),
Ward code (INTEGER,NONULL),
Name (CHAR (15)),
of beds (SMALLINT)

CREATE TABLE STAFF:
Hospital code (INTEGER,NONULL),
Ward code (INTEGER,NONULL),
Employee# (INTEGER,NONULL),
Name (CHAR (20)),
Duty (CHAR (*)),
Shift (CHAR (10)),
Salary (DECIMAL (7,2)

CREATE TABLE DOCTOR:
Hospital code (INTEGER,NONULL),
Doctor# (INTEGER,NONULL),
Name (CHAR (20)),
Specialty (CHAR (*))

CREATE TABLE PATIENT:
Registration# (INTEGER,NONULL),
Name (CHAR (20)),
Address (CHAR (20)),
Birthdate (CHAR (8)),
Sex (CHAR (1)),
SSN (INTEGER,NONULL)

CREATE TABLE DIAGNOSIS:
Registration# (INTEGERNONULL),
Diagnosis code (INTEGER,NONULL),
Diagnosis type (CHAR (*)),
Complications (CHAR (*)),
Precautionary info (CHAR (*))

CREATE TABLE LAB:
Lab# (INTEGER,NONULL),
Name (CHAR (20)),
Address (CHAR (20)),
Phone# (CHAR (7))

:417

173

CREATE TABLE TEST:
~ Registration# (INTEGER,NONULL),

Lab# (INTEGER,NONULL),
Test code (INTEGER,NOKULL),
Type (CHAR (20)),
Date ordered (CHAR (8)),
Time ordered (CHAR (8)),

- Specimen/order# (INTEGER),
Status (CHAR ()

174

Appendix E: DBTG Version of Medical Data Base

[9:121-125]

T .MOMP TAL

oocr' ooRo~ ,,,,
W ,ARD M orRJI ,AL LAO

WARD STAFF DOCTORSATTENDING HOSPITALS

OCCUPANCY
PA TENTSAT tENDED ,S1SA,;IGA.IJC

.TESTS
v-{,TENT ORDERED TEST1

R PAIN IGOSIS

wi D IAGNOSIS

HOSPITAL(Hospital code, Name, Address, Phone#, # of beds)
WARD(Ward code, Name, # of beds)
STAFF(Employee#, Name, Duty, Shift, Salary)
DOCTOR(Doctor#, Name, Specialty)
DOCTOR PATIENT(Doctor#, Registration#)
PATIENT(Registration#, Bed#, Name, Address, Birthdate,

Sex, SSN)
DIAGNOSIS(Diagnosis code, Diagnosis type, Complications,

Precautionary Info)
HOSPITAL LAB(Hospital code, Lab#)
LAB(Lab#, Name, Address, Phone#)
TEST(Specimen/order#, Type, Data ordered, Time ordered,

Testcode, Status)

RECORD NAME IS HOSPITAL
DUPLICATES ARE NOT ALLOWED FOR Hospital code.

Hospital code TYPE IS FIXED 6
Name TYPE IS CHARACTER 15
Address TYPE IS CHARACTER 20
Phone# TYPE IS CHARACTER 7
of beds TYPE IS FIXED 4

175

4

-, . -- " J ,, .,- , * . -.. .. ,, . , . , . . ,., ,

RECORD NAME IS WARD
DUPLICATES ARE NOT ALLOWED FOR Ward code.

Ward code TYPE IS FIXED 6
Name TYPE IS CHARACTER 15
of beds TYPE IS FIXED 4

RECORD NAME IS STAFF
DUPLICATES ARE NOT ALLOWED FOR Employee#.

Employee# TYPE IS FIXED 6
Name TYPE IS CHARACTER 20
Duty TYPE IS CHARACTER 15
Shift TYPE IS CHARACTER 10
Salary TYPE IS FIXED 5 2

RECORD NAME IS DOCTOR
DUPLICATES ARE NOT ALLOWED FOR Doctor#

Doctor# TYPE IS FIXED 6
Name TYPE IS CHARACTER 20
Specialty TYPE IS CHARACTER 20

RECORD NAME IS DOCTOR PATIENT
DUPLICATES ARE NOT ALLOWED FOR Doctor# Registration#.

Doctor# TYPE IS FIXED 6
Registration# TYPE IS FIXED 6

RECORD NAME IS PATIENT
DUPLICATES ARE NOT ALLOWED FOR Registration#
DUPLICATES ARE NOT ALLOWED FOR SSN.

Registration# TYPE IS FIXED 6
Bed# TYPE IS FIXED 4
Name TYPE IS CHARACTER 20
Address TYPE IS CHARACTER 20
Birthdate TYPE IS CHARACTER 8
Sex TYPE IS CHARACTER 1

CHECK IS VALUE 'F', 'M'

SSN TYPE IS FIXED 6

RECORD NAME IS DIAGNOSIS
Diagnosis code TYPE IS FIXED 6
Diagnosis type TYPE IS CHARACTER 25
CoWplicaiiona TYE IS CaARACTER 25
Precautionary Info TYPE IS CHARACTER 40

RECORD NAME IS HOSPITAL LAB
DUPLICATES ARE NOT ALLOWED FOR Hospital code. Lab#.

Hospital code TYPE IS FIXED 6
Lab# TYPE IS FIXED 6

176

,.- . ',.

"r " -RECORD NAME IS LAB

DUPLICATES ARE NOT ALLOWED FOR Lab#.
Lab# TYPE IS FIXED 6
Name TYPE IS CHARACTER 20
Address TYPE IS CHARACTER 20
Phone# TYPE IS CHARACTER 7

RECORD NAME IS TEST
Test code TYPE IS FIXED 6
Type TYPE IS CHARACTER 20
Date ordered TYPE IS CHARACTER 8
Time ordered TYPE IS CHARACTER 4

CHECK IS VALUE 0 THRU 2400.
Specimen/order# TYPE IS FIXED 6
Status TYPE IS FIXED 15

SET NAME IS LABS USED.
OWNER IS HOSPITAL

ORDER IS NEXT.
MEMBER IS HOSPITAL LAB

INSERTION IS AUTOMATIC RETENTION IS FIXED
SET SELECTION IS BY

STRUCTURAL Hospital code = Hospital code.

SET NAME IS OCCUPANCY.
OWNER IS WARD
ORDER IS SYSTEM DEFAULT.

MEMBER IS PATIENT
INSERTION IS MANUAL RETENTION IS OPTIONAL
SET SELECTION IS BY VALUE OF Ward code.

SET NAME IS STAFF DOCTORS.
OWNER IS HOSPITAL

ORDER IS SORTED BY DEFINED KEYS
DUPLICATES ARE NOT ALLOWED.

MEMBER IS DOCTOR
INSERTION IS MANUAL RETENTION IS OPTIONAL
SET SELECTION IS BY VALUE OF Hospital code.

SET NAME IS DOCTORS ATTENDING
OWNER IS DOCTOR

ORDER IS NEXT.
MEMBER IS DOCTOR PATIENT

INSERTION IS AUTOMATIC RETENTION IS FIXED
SET SELECTION VALUE IS BY STRUCTURAL Doctor# = Doctor#

SET NAME IS PATIENTS ATTENDED.
OWNER IS PATIENT

ORDER IS NEXT.
MEMBER IS DOCTOR PATIENT

INSERTION IS AUTOMATIC RETENTION IS FIXED
SET SELECTION IS BY STRUCTURAL

" - 177

-, -. ...-. ,.,,. -. . -... - ,. .,_ :>K . >.'. ,, . . -_.

Registration# =Registration

SET NAME IS PATIENT DIAGNOSIS
OWNER IS PATIENT

ORDER IS LAST.
MEMBER IS DIAGNOSIS

INSERTION IS AUTOMATIC RETENTION IS FIXED

SET SELECTION IS BY VALUE OF Registration#.

SET NAME IS TESTS ORDERED.
OWNER IS PATIENT

ORDER IS FIRST.

INSERTION IS AUTOMATIC RETENTION IS FIXED.

SET NAME IS TEST ASSIGNED.
OWNER ISLAB

ORDE ISLAST.
MEMBER IS TEST

INSERTION IS AUTOMATIC RETENTION IS FIXED.

*SET NAME IS HOSPITALS SERVICED
OWNER IS LAB

ORDER IS NEXT.
MEMBER IS HOSPITAL LAB

INSERTION IS AUTOMATIC RETENTION IS FIXED
SET SELECTION IS BY STRUCTURAL Lab# =Lab#.

SET NAME IS HOSPITAL WARDS
OWNER IS HOSPITAL

ORDER IS SORTED BY DEFINED KEYS
DUPLICATES ARE NOT ALLOWED.

MEMBER IS WARD
INSERTION IS AUTOMATIC RETENTION IS FIXED
SET SELECTION IS BY VALUE OF Hospital code.

SET NAME IS WARD STAFF
OWNER IS WARD

ORDER IS SORTED BY DEFINED KEYS
DUPLICATES ARE NOT ALLOWED.

MEMBER IS STAFF
INSERTION IS AUTOMATIC RETENTION IS MANDATORY
SET SELECTION IS BY VALUE OF Ward code.

173

Appendix F:

IMS Version of Medical Data Base

6STAFF PAT ENT rA-TD

TEST DIEAGNOq ATT-DOC

HOSPITAL(Hospcode, name, address, phone#, #ofbeds)
LAB(Lab#, name, address, phone#)
WARD(Wardcode, name, #ofbeds)
STAFF(Empl#, name, duty, shift, salary)
PATIENT(BeaL, bed#, name, address, birthdate, sex, SSN)
DOCTOR(Doctor#, name, specity)
PAT-ATTDQLe)
ATT-DOC(Doctor#)
TEST(spc/ord#, lab#, type, dateordr, timeordr, testcode,

status)
DIAGNOS(Diagcode, diagtype, corupins, precinfo)

1 PCB TYPE-DB,DBDNAME-MEDDBD,KEYLEN=15
2 SENSEG NAME=HOSPITAL,PROCQPT=G

4 3 SENSEG NAME=WARD,PARENT=HOSPITAL,PROCOPT-G
4 SESSEC NAME=LAB,PARENT=IiOSPITAL,PROCOPT-G
5 SENSEG NAME=DOCTOR,PARENT=HQSPITAL,PROCOPT=GIRD
6 SENSEG NAM4E-STAFF,PARENTmWARD,PROGOPT-GIRD
7 SENSEG NAME-PATIENT,PARENTmWARD,PROCOPT-GIRD
8 SENSEG NAM'E-PAT-ATTD,PARENT-DQCTOR,PROGOPT=GIRD

4 9 SENSEG NAMEmTEST,PARENT-PATIENT,PROCOPTmGIRD
10 SENSEG NAME=DIAGNOS,PARENT=PATIENT,PROCOPT=GIRD
11 SENSEG NAMIE=ATT-DOCPARENT-PATIENT#PROCOPT=GIRD

179

4D-i5i 856 ANALYSIS AND SPECIFICATION OF R UNIVERSAL DATA MODEL 3/4
FOR DISTRIBUTED DATA .(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. A J JONES

UCLASSIFIED 14 DEC 84 AFIT/GCS/ENG/84D-ii F/G 9/2mzamaza/aaassIa

mEEmhhEEmhohEImEEElihhhIhhlhE
EEEEIIIIIIIIIEE

IEEEEEEEElilli

1 .01 ___ L * 2.2 M

IWO

Iliii1.8

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS 1963 A

" . ' . .°. .-..

1 DBD NAME-MEDDBD
2 SEGM NAME=HOSPITAL,BYTES-48
3 FIELD NAME-Hospcode, BYTES=3,START-1
4 FIELD NAME-name,BYTES=15,START-4
5 FIELD NAME-address,BYTES-2O,START-19
6 FIELD NAME-phone# ,BYTESm7 ,START=40
7 FIELD NAME-#ofbeds,BYTES=2,START-47
8 SEGM NAME=WARD,BYTES-20
9 FIELD NAME-Wardcode,BYTESm3,STARTn1

10 FIELD NAME-name,BYTES-15,START-4
11 FIELD NAME-#ofbeds,BYTES-2,START-19
12 SEGM NAME=LAB,BYTES=5O
13 FIELD NAME-Lab#,BYTES=3,START-1
14 FIELD NAME=name,BYTES-20,START-4
15 FIELD NAME=address,BYTES=20,START=24
16 FIELD NAME-phone# ,BYTES-7 ,START-44
17 SEGM NAME=DOCTOR,BYTES=83
18 FIELD NAME-Doctor#,BYTES=3,START-1
19 FIELD NAME-nameBYTES=20,START=4
20 FIELD NAME-speclty,BYTES-60,START=24
21 SEOM NAME-STAFF,BYTES=59
22 FIELD NAME-Empl# ,BYTES-3,START-1
23 FIELD NAME-name,BYTES=20,START=4
24 FIELD NAME-duty,BYTES=30,START-24
25 FIELD NAME-shift ,BYTES=1 ,START=54
26 FIELD NAME=salary,BYTES-5,START-55
27 SEGM NAME-PATIENT,BYTES-64
28 FIELD NAME=Reg#,BYTES=3,START-1
29 FIELD NAME-bed# ,BYTES=3,START=4
30 FIELD NAME=name,BYTES=20,START=7
31 FIELD NAMEwaddress,BYTES=20,START=27
32 FIELD NAME=birthdate ,BYTES=8 ,START-47
33 FIELD NAME=sex,BYTES=1 ,START=48
34 FIELD NAME=SSN,BYTES=9,START=49
35 SEGM NAME=PAT-ATTD BYTES=5
36 FIELD NAME=Reg#,BYTES=5,START=1
37 SEGM NAME-TESTBYTES=107
38 FIELD NAME-Testcode,BYTES-6,START-1
39 FIELD NAME-Lab# ,BYTES=3 ,START=7

*40 FIELD NAME=type,BYTES=20,START=10
41 FIELD NAME=dateordr,BYTES=8,START=30
42 FIELD NAME=timeordr,BYTES-4,START-38
43 FIELD NAME-spc/ord#,BYTES-6,START-42
44 FIELD NAME-status,BYTES-60,START=48
45 SEGM NAME-DIAGNOS,BYTES=186

*46 FIELD NAME=Diagcode,BYTES-6,STARTa1
47 FIELD NAMEwdiagtype,BYTES-60,STARTw7
48 FIELD NAME-complns,BYTES-60,START=67
49 FIELD NAIE-precinfo,BYTES=60,START-127
50 SEGM NAME=ATT-DOC,BYTES=3
51 FIELD NAME-Doctor#,BYTES=3,START-1

6IS

Appendix G:

UDB Version of Sample Data Base

(Create Data Base MEDICAL DATA BASE
(

Domain char-15 character(15)
Domain char-20 character(20) ,
Domain code-type integer(NONULL)
Domain #type integer(NONULL)

Domain small-int Small Integer
Domain var-string Character Var

Create HOSPITAL (
Unique Hospital code: code-type,
Name: char-15,
Address: char-20,
Phone#: #type,
of beds (Small Integer),
Keys are Hospital code)

Create DOCTOR PATIENT (
Unique Association between Doctor#

and Registration#
Alternate names are DOCTORS ATTENDING
(* doctors attending a given patient *)

Alternate names are PATIENTS ATTENDED
(* patients a doctor is attending *)
Doctor#: #type,
Registration#: #type,
Keys are Doctor#, Registration#)

Create HOSPITAL LOCATION (
Unique Hospital code: code-type,
Location code: code-type,
Keys are Hospital code)

Create LAB LOCATION (
Unique Lab#: ftype,
Location code: code-type,
Keys are Lab#, Location code)

Create PATIENT LOCATION (
Unique Registration#: #type,
Location code: code-type,
Keys are Registration#, Location code)

181

- -----

Create Ward (
Unique Association between Hospital code

and Ward Code
Hospital Code: code-type,
Unique Ward Code: code-type,
Name: char-15,
of beds: small-int,
Keys are Hospital Code, Ward Code)

Create LAB (
Unique Lab#: #type,
Hospital code: code-type,
Name: char-20,
Address: char-20,
Phone#: #type,
Keys are Lab#)

Create Staff (
Hospital code: code-type,
Ward Code: code-type,
Unique Employee#: #type,
Name: char-20,
Duty: var-string,
Shift: Character (10),
Salary: Real (7.2),
Keys are Hospital Code, Ward Code, Employee#)

Create DOCTOR (
Hospital code: code-type,
Unique Doctor#: #type,
Name: char-20,
Specialty: var-string,
Keys are Doctor#, Hospital code)

Create PATIENT (
Unique Registration#: #type,
Ward code: code-type,
Name: char-20,
Address: char-20,
Bed#: #type,
Birthdate: Character (8),
Sex: Character (1),
SSN: #type,
Keys are Registration#, Ward code)

Create DIAGNOSIS (
Registration#: #type,
Diagnosis code: code-type,
Diagnosis type: var-string,
Complications: var-string,
Precautionary info: var-string,
Keys are Diagnosis code, Registration#)

182

.*. Create TEST (
" Registration#: #type,

Lab#: #type,
Test code: code-type,
Type: char-20,
Date ordered: Character (8),
Time ordered: Character (4),
Specimen/order#: Integer,

Keys are Test code, Registration#)

183

I

S- . .

Appendix R:

The Canonical Synthesis Process

(10:249-251]

". Take the first user's view of data and draw it in the
form of a bubble chart--a graph with point-to-point directed
links between single data items, representing associations of
the two types: 1 and M.

Where a concatenated key is used, draw this as one bub-
ble, and draw the compound data items of the concatenated key
as separate bubbles, thus:

Check that the representation avoids hidden transitive
dependencies. Where a concatenated key data item has been

• used, ensure that all single-arrow links from it go to data

items which are dependent on the full concatenated key, not
merely part of it. In other words, ensure that the repre-
sentation of the user's view is in third normal form.

Otherwise, draw only the association that concern this
user.

2. Take the next user's view, representing it as above.

Merge it into the graph. Check for any synonyms or homonym,
removing them if they appear.

3. In the resulting graph distinguish between the attribute

nodes and the primary-key nodes. (A primary-key node has one
or more single-arrow links leaving it.) Mark the primary
keys in some way (e.g. red color).

4. For each association between keys, add the inverse
association if it is not already on the graph. If this
results in an M:M link between keys, determine whether the

inverse association would ever be used in reality. If it
* could be used at any time in the future replace it by intro-

ducing an extra concatenated key incorporating the key data

items that were linked.

5. Examine the associations and identify any that appear
redundant. For any associations that are candidates for

184

0

~ ~. removal, check carefully that their meaning is genuinely
redundant; if so, remove them.

6. Repeat the previous four steps until all user views are
merged into the graph.

7. Identify the root keys. (A root key is a primary key
with no single arrow leaving it to another key.)

For pictorial clarity the diagram should be rearranged
with the root keys at the top. The single-arrow links be-
tween keys should point upward where possible. The links
between primary keys may be marked in color.

8. Observe whether the graph contains any isolated attri-
butes. An isolated attribute is a node with no single-arrow
links entering or leaving it (only double-arrow links). An
isolated attribute could be treated in one of three ways:

(a) It may be implemented as a repeating attribute in a
variable-length record.

* (b) It may be treated as a solitary key--a one-data-item
record.
(c) It may be the result of an error in interpretation of
the user's data, in which case the error is corrected.

* 9. Adjust the graph to avoid any intersecting attributes (an
intersecting attribute with more than one single-arrow link
entering it). An intersecting attribute can be avoided by:

(a) Replacing it with one or more links to it with
equivalent links via existing key.
(b) Duplicating the data item group in question.
(c) Treating it as a solitary key--a one-data-item record.

10. Redraw the data items arranged into groups (records,
segments, tuples), each having one primary key and its
associated attributes. A group may now be drawn as a box.
The boxes may be offset from the left to indicate their
"depth" under the root group.

11. Identify all secondary key. (A secondary key is an
attribute with one or more double-arrow links leaving it.)
Draw the secondary-key links between the boxes.

12. To make the resulting model as stable as possible, apply
* the steps referred to in Chapter 17 on stability analysis.

13. The unconstrained "canonical" model may now be converted
into the more constrained schema associated with a particular
software package. It is generally a simple step to convert
the canonical model into a CODASYL, DL/1, or relation schema.

* Some software, however, has constraint that would require a

185

major deviation from, or splitting of, the canonical view.
Some software will simply not be able to handle it.

In converting the canonical model to a particular
software schema, performance considerations associated with
high-usage and fast-response paths should be examined. We
suggest the following steps:

(a) Mark all paths which are used in interactive systems and
which need fast response time.
(b) Estimate the number of times per month each user path
will traversed. Add up how often each association will be
traversed (in each direction when applicable).
(c) Estimate the length of each group.
(d) For each M associations, estimate the size of M; that
is, how many values on average are associated with one value,
or how many "child" groups are associated with a "parent"
group.

The information above may affect the choice of structure
and may cause the designer to modify the schema. In some
cases a group may be split because it contains a mixture of
frequently used and rarely used data, or is too long. In
some cases a schema will be split to avoid complexity.

14. With the software schema designed, return to the
original users views and ensure that they can be handled by
it. In some cases the performance cost of handling a part-
icular user view is sufficiently great that it is worthwhile

Iwo completely modifying that user view."

186

Appendix: I

SADT Diagrams for UDB

137

Node Index
Cl A-O Universal Data Base Management System
C2 AO Evaluate UDB Transaction
C3 Al Evaluate Queries
C4 All Analyze Query

A1II Is Query in LDML or UDML?
A112 Is Desired Information at

least partially universal?
C7 A12 Modify Query
C8 A121 Translate to Universal DML

A1211 Translate IMS to UDML
A1212 Translate DBTG to UDM
A1213 Translate Sys. R to UDML

C12 A122 Parse and Optimize Query
C13 A123 Translate to Local DML

A1231 Translate Uni. to IMS DML
A1232 Translate Uni. to DBTG DML
A1233 Translate Uni. to Sys. R DML

C17 A2 Evaluate Data
C18 A21 Analyze Data

A211 Is Data in Local or Universal
Format?

A212 Does Data Need to be in Local
or Universal Format?

C21 A22 Modify Data
C22 A221 Translate Data to Local Format

A2211 Translate to IMS Data Format
A2212 Translate to DBTG Data Format
A2213 Translate to System R Data

Format
C23 A222 Translate Data to Uni. format

A2221 Translate IMS Data to
Universal Format

A2222 Translate DBTG Data to
Universal Format

A2223 Translate System R Data to
Universal Format

1

188

.""'..." . . '---:g J ... " ."" . .-' . -. "''.-2 .'.'- .. . " "- " .. ,. .-. . - . - . . "- -- . . . ' .

A-O Universal Data Base Management System

Abstract: This diagram indicates that queries and data enter
(conceptually) the UDBMS and are broken down into local or
universal queries and data. Local queries and data are
routed to the local data base management system (LDBMS) while
universally formatted queries and data are sent out on the
network to the appropriate DBMS.

A-O Evaluate UDB Transaction is visualized as
existing at the local level only (each local DBMS (LDBMS)
having its own UDBMS module) with no real global system
actually existing in the sense of being one singular distinct
entity. Basically, the UDBMS will be used as a front-end to
the existing local DBMS. The LDBMS will func-tion as before
and will not "realize" that the UDBMS exists, only that it is
part of a distributed DBMS (DDBMS).

A-02 Process Local Data Base Management System
(LDBMS) Transaction is not decomposed any further and merely
represents the existence of a given LDBMS.

A-03: Process Universal Data Base Management System
(UDBMS) Transaction is not decomposed any further and
represents the existence of a DDBMS which is conceptually

. viewed as a singularly distinct UDBMS.

I

I

I o 189

. . ** -* ., -

.1,

I C -i

°I C

-4-

*>

I "-

I o wo .. ." ' • "'.. ' " :- "

<V

- ~ AP

AO Evaluate UDB Transaction

Abstract: This diagram indicates that queries and data enter
the system and are handled separately. At this time all
queries and data may be in either the local or universal
language/data format. Local queries (and data) are queries
that where submitted to the system by a local user of the
system. Universal queries and data will be queries and data
that origninated from another DBMS on the network. Queries
and data from network users may arrive in the local language
/data format if the DDBMS system happens to be the same model
as the local one.

Al Evaluate Queries takes queries in either the

local or universal language, evaluates them, parses them
appropriately, and routes the resulting subqueries to either
the LDBMS or the correct GDBMSs (UDBMSs) for actual computa-
tion. Obviously, all queries entering the LDBMS from the
network will involve information contained all locally.
Local queries will be either all local, partially local, or
all global. Local queries requiring global information will
wait until that information is sent back to the LDBMS.

A2 Evaluate Data takes incoming or outgoing data

packages, translates them into the necessary data format and

routes them either to the LDBMS or some GDBMS on the network.
Part of the data package will include a route message which
indicates whether the package is incoming or outgoing.

191

AA

~6 L

I V4

Al Evaluate Queries

Abstract: Evaluate queries analyzes the query to determine
if any translations are required.

All Analyze Query examines a query to determine if
that query needs to be translated into the universal (or
local) langauge. Queries in the local language, involving
only locally stored information, are routed straight to the
LDBMS.

A12 Modify Query translates a query from the univer-
sal to the local or the local to the universal language,
optimizes the query, and then, if necessary, parses the query
appropriately to gather any information on other DBMS.

193

V.

fl -V

.d,

0

* Li1

-J3

All Analyze Query

Abstract: This diagram shows how the analyzer evaluates a
query. First it determines whether or not the query is in
the universal or local language. Next, it determines where
the information that the query desires is all local or at
least partially global. If the query is in the local
language and involves only local data then that query is
routed straight to the LDBMS. Otherwise, control messages
are generated for the query modfier (A12) to indicate to the
query modifier how the query should be modified. The three
messages generated are the PQM (Parse Query Message), the
TQLM (Translate Query to Local Message), and the TQUM
(Translate Query to Unversal Message - may require parsing).

195

I~ . . . , , '' • . ".,. K" . ". . -"2""."-"-"."< ' -" .-". (." 2 "; . -"; i"i" . ""? -" -"i -

96L

C' (~cc

I-- >

N 1

I ~ '0
4

ujz

A12 Modify Query

Abstract: This diagram shows how the modify query routes
queries to correct module for modificaton. Any query in the
local language that needs at least a portion of its
information from the UDBMS is translated into the universal
langauge and sent to the parser and optimizer. It may end up
that a subset of that universal query, originally in the
local language, will be translated back into the local
language and routed to the LDBMS. The LDBMS will be sent the
original local query so that when all of the required data
arrives from the network it can evaluate the original query.
All queries in the universal langauge, which require only
local information, are translated into the local langauge and
routed to the LDBMS with a message indicating where to sent
the results of the query.

197

0

96 L

-2

ccd

rm

Zz

l< Go O

C-(

vi

acwL

A121 Translate to Universal DML

Abstract: This diagram shows how the LDMLs are translated to
the UDML.

A1211 Translate IMS to Universal DML takes a query
in the IMS DML and translates it to the UDML.

A1212 Translate DBTG to Universal DML takes a query
in the DBTG DML and translates it to the UDML.

A1213 Translate System R to Universal DML takes a
query in the System R DML and translates it to the UDML.

1

199

!r... . .

1-C- X V W- W-R

ooz

Ii 4C
4c

Ii zz

CC

U-J

OD vi 0

oa

ww

* 0 '

I. , z"R -W

" A123 Translate to Local DML

Abstract: This diagram shows how the UDMLs are translated to
their respective LDMLs.

A1231 Translate Universal to IMS DML takes a query
in the UDML and translates it to the IMS DML.

A1232 Translate Universal to DBTG DML takes a query
in the UDML and translates it to the DBTG DML.

A1233 Translate Universal to System R DML takes a
query in the UDML and translates it to the System R DML.

201

zoz

too

ON.

wVol

4c4

00

A2 Evaluate Data

Abstract: This diagram shows that the data is first analyzed
to determine if and how it should be modified. If modifica-
tion is required the data package is sent the the Data Modi-
fier to accomplish this.

A21 Analyze Data determines if the data is in the
local or universal format and determines what formats the
information should be in for any requesting DBMS. Messages
are generated for the Modify Data (A22) indicating what it
should do.

A22: Modify Data translates the data packages from the
local to the universal or the universal to the local.

203

,4 < i _ . i i i i i i . i " " . .-< i .: , < .< i : : .

I L

-

OCC

I~LAI

L.
*u

Sc

PC Ph. .

"-4 .

- A21 Analyze Data

Abstract: This diagram shows how the analyze data deter-
mines how and if a particular group of data should be trans-
lated from one data format (local/universal) to another
(universal/local). If the data is in the particular format
that is required then no translation is done. If the data is
in the local format and needs to be in the universal, then a
Translate Data to Universal Message (TDUM) is generated for
the Modify Data module (A22) and the data is routed to it.
If the data is in the universal format and needs to be in the
local one, then a Translate Data to Local Message (TDLM) is
generated for the Modify Data module and the data routed to
it.

205

90..-- ---.--

-v4

.4m

~, uj

A22 Modify Data

Abstract: This diagram shows data coming into the Modify
Data module and, depending on the control message generated
by Analyze Data (A21), translates the data into the local or
universal format. The System Data Dictionary contains the
required information about each format to necessary to
perform the translations.

A221 Translate Data to Local Format recieves data in
universal format and translates it to the local data format.

A222 Translate Data to Universal Format recieves
data in the local format and translates it to the universal
format.

207
'0) - " " ? ' " - . ' i . . . '- i"i i. - .i- . .. i -i - - - -i-i...i . :i ' , i.' l-

L) -if

wiw
P.-J

42

oww

PC -C6

A221 Translate Data to Local Format

Abstract: This diagram shows that a given data package in
the universal format is translated to the required local
data format depending on which model the target data base is
in.

A2211 Translate to IMS Data Format takes a universal
data package and translates it to the EMS data format.

A2212 Translate to DBTG Data Format takes a univer-
sal data package and translates it to the DBTG data format.

A2213 Translate to System R Data Format takes a
universal data package and translates it to the System R data
format.

L0

209

V..2

uJj-

611

< 'E

*! H
4,C

-

I~p Z..

A222 Translate Data to Universal Format

Abstract: This diagram shows that a given data package in
a given local data format is translated to the universal data
format.

A2221 Translate IMS Data to Universal Data Format
takes a IMS data package and translates it to the universal
data format.

A2222 Translate DBTG Data to Universal Data Format
* takes a DBTG data package and translates it to the universal

data format.

A2223 Translate System R Data to Universal Format
takes a System R data package and translates it to the univer-
sal data format.

211

7 V) .7

Vi Q-:

a uI

CZI

* U

rag

z. ..

2'"'-' --- " . ."''' . - -- " "" ""' -". i "2 - o -".- -" . i ; " '.-. . . " .." .,' , ..- ' -. . . .'. . .'-', -,', u- .. , "- . - _ ,. ,," .z . , • - .

Appendix: J

Data Dictionary Entries for UDB

212

i i: . ,.;:. : .. > : : - _ : . :. .-. :i..- .. .: ~i .i ..- - ., :::

Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: A21

NAME: Analyze Data

INPUTS: Data

OUTPUTS: Control Message 1, Local Data

CONTROLS: System Data Dictionary

DESCRIPTION: Analyzes a data package to determine what, if
any, modifications must be done. It controls whether or not
the Modify Data activity is performed.

_ 2,'

' 213

. * ...

.9

Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: All

NAME: Analyze Query

INPUTS: Queries

OUTPUTS: Queries, Control Message 2, Local Queries

CONTROLS: System Data Dictionary

DESCRIPTION: Analyzes a query to determine what, if any,
modifications must be done. It controls whether or not the
Modify Query activity is performed.

2

,1

0-

*

214

o

Universal Data Base

Data Dictionary Entry for Data Element

TYPE: DATA ELEMENT

DATE: 6 Oct 84

NAME: Control Message 1

DESCRIPTION: Control message indicating how a data package
should be translated.

SOURCES: A21

DESTINATIONS: A22

COMPOSITON: TDUM, TDLM

PART OF: N/A

DATA CHARACTERISTICS: N/A

VALUES: N/A

ALIASES: None

215

Universal Data Base

Data Dictionary Entry for Data Element

TYPE: DATA ELEMENT

DATE: 6 Oct 84

NAME: Control Message 2

DESCRIPTION: Control message indicating how a query should
be translated.

SOURCES: All

DESTINATIONS: A12

COMPOSITON: TQLM, TQUM, PQM

PART OF: N/A

*O DATA CHARACTERISTICS: N/A

VALUES: N/A

ALIASES: None

2

6.

6t

.................................l- i. iil i l li

Universal Data Base

Data Dictionary Entry for Data Element

TYPE: DATA ELEMENT

DATE: 6 Oct 84

NAME: Control Message 3

DESCRIPTION: Message sent from one module to another
indicating whether or not the query or data in question is in
or needs to be in the universal or local form.

SOURCES: Al1, A211

DESTINATIONS: A112, A212

COMPOSITON: N/A

40 PART OF: N/A

DATA CHARACTERISTICS: N/A

VALUES: N/A

ALIASES: None

2

'S

217

6:.•. .. ° , ' l . '° '

W.,

Universal Data Base

Data Dictionary Entry for Data Element

TYPE: DATA ELEMENT

DATE: 6 Oct 84

NAME: Data

DESCRIPTION: Encompasses any type of data coming into the
system or process. May be only composed of data in the local
DBMS format, the universal data format, or both.

SOURCES: N/A

DESTINATIONS: AO, A2, A21, A22, A211, A212

COMPOSITON: Local Data, Universal Data

PART OF: N/A

DATA CHARACTERISTICS: Universal, IMS, CODASYL, or Relational
data formats.

VALUES: N/A

ALIASES: None

0

218

• ~- ---. - --- -- --- ----.-..-..-. - - ---..- i - i . . < '

Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: A212

NAME: Does Data Need to be in the Local or Universal Format

- INPUTS: Data

OUTPUTS: Local Data, Control Message 1

CONTROLS: System Data Dictionary, Control Message 3

DESCRIPTION: Self-explanatory. Answer to question used in
conjunction with A211 to produce appropriate control message
for A22. If the data needs to be in the local format then

* the TDLM message is generated otherwise the TDUM is
generated.

0

219

Universal Data Base

(Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: A2

NAME: Evaluate Data

INPUTS: Data

OUTPUTS: Local Data, Universal Data

CONTROLS: System Data Dictionary

DESCRIPTION: Evaluates an incoming data package and deter-
mines if the package must be converted to the local format or
the universal format.

220

Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: Al

NAME: Evaluate Queries

INPUTS: Queries

OUTPUTS: Local Queries, Universal Queries

CONTROLS: System Data Dictionary

DESCRIPTION: Evaluates an incoming query, determines if any
translations or parsing are required, performs them, and
routes the resulting queries to the appropriate DBMSs.

221

0

..", '.." Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: AO

NAME: Evaluate UDB Transaction

INPUTS: Queries, Data

OUTPUTS: Local Queries, Local Data, Universal Queries,
Universal Data

CONTROLS: System Data Dictionary

DESCRIPTION: Evaluates an incoming transaction which may be
* either a query or a data package. Each query or data package

may originate from the UDBMS or LDBMS and could be in either
the universal or local DML/data format. Queries or data in
the local format could either originate from a system using
the same model out on the network or from the LDBMS. Queries
from the LDBMS are rejected if they involve universal data
else they are simply routed to the LDBMS.

2

222

0°

Universal Data Base

Data Dictionary Entry for Data Element

TYPE: DATA ELEMENT

DATE: 6 Oct 84

NAME: Global Data Dictionary (GDD)

DESCRIPTION: The GDD contains data dictionary entries and
information about all of the data and data bases in the UDB
system. The GDD will exist at a network site controlled by
the UDBAC.

SOURCES: N/A

DESTINATIONS: N/A

COMPOSITON: N/A

PART OF: N/A

DATA CHARACTERISTICS: N/A

VALUES: N/A

ALIASES: None

223

' '. • . " , *." " .'- • -- ". , - -~ . " , -'". * , * . , ' '-' . - .- -

Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: A121

NAME: Translate to Universal DML

INPUTS: Local Queries

OUTPUTS: Universal Queries, PQM

CONTROLS: System Data Dictionary, TQUM

DESCRIPTION: Translates a LDML to the UDML.

224

S..f. Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: A112

NAME: Is Desired Information at Least Partially Universal

INPUTS: Queries

OUTPUTS: Local Queries, Control Message 2

CONTROLS: System Data Dictionary, Control Message 3

DESCRIPTION: Self-explanatory. Answer to question used in
conjunction with A1I1 to produce appropriate control message
for A12. If the query is in the LDML and the desired
information is only in the LDBMS, then the query is routed to
the LDBMS. Otherwise the appropriate type of Control Message
2 is generated to indicate to A12 what to do. If the query
is in the UDML and involves only universal information or
local and universal, then the PQM message is sent (active)
while the other two are not (inactive). If the query is in

Ice the UDML and involves only local information, then the TQLM
is sent while the other two are not. If the query is in the
LDML and involves global information the TQUM is sent while
the other two are not. Note: This last ability may not be
supported in the final UDB.

2

225

Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: AIll

NAME: Is Query in Local or Universal DML

INPUTS: Queries

OUTPUTS: Control Message 3

CONTROLS: Local Data Dictionary

DESCRIPTION: Self-explanatory. Answer to question used in
conjunction with A112 to produce appropriate control message
for A12.

226

I-,"...°. .

Universal Data Base

Data Dictionary Entry for Data Element

TYPE: DATA ELEMENT

DATE: 6 Oct 84

NAME: Local Data

DESCRIPTION: Encompasses any type of data coming into the
system or process which is formatted according to the LDBMS's
data format.

SOURCES: A2, A22, A21, A212, A221, A2211, A2212, A2213

DESTINATIONS: A222, A2221, A2222, A2223

COMPOSITON: Data in local format.

PART OF: Data

DATA CHARACTERISTICS: IMS, CODASYL, or Relational data

formats.

VALUES: N/A

ALIASES: None

227
0

Universal Data Base

Data Dictionary Entry for Data Element

TYPE: DATA ELEMENT

DATE: 6 Oct 84

NAME: Local Data Dictionary (LDD)

DESCRIPTION: The LDD contains data dictionary entries for
all of the data contained within the local data base. It
will contain the information necessary for evaluation and
translation of queries and data packages.

SOURCES: N/A

DESTINATIONS: All1, A211

COMPOSITON: N/A

PART OF: System Data Dictionary (SDD)

DATA CHARACTERISTICS:

VALUES: N/A

ALIASES: None

228

S, -- - -- - - -- - - J r~ r7 -1 -- r

Universal Data Base

Data Dictionary Entry for Data Element

TYPE: DATA ELEMENT

DATE: 6 Oct 84

NAME: Local Queries

DESCRIPTION: Encompasses any type of query coming into the
system or process in the local DML.

SOURCES: Al, All, A12, A112, A123, A1231, A1232, A1233

DESTINATIONS: A121, A1211, A1212, A1213

COMPOSITON: None

PART OF: Queries

DATA CHARACTERISTICS: IMS, CODASYL, or Relational DMLs.

VALUES: N/A

ALIASES: None

I
.

229

.

Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: A22

NAME: Modify Data

INPUTS: Data

OUTPUTS: Universal Data, Local Data

CONTROLS: System Data Dictionary, Control Message 1

DESCRIPTION: According the information provided by the
controls, modify query will translate data from the universal
format to the local format.

230

Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: A12

NAME: Modify Query

INPUTS: Queries

OUTPUTS: Universal Queries, Local Queries

CONTROLS: System Data Dictionary, Control Message 2

DESCRIPTION: According the information provided by the
controls, modify query will translate queries from the UDML
to the LDML and vice versa.

231

Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: A122

NAME: Parse and Optimize Query

INPUTS: Universal Queries

OUTPUTS: Universal Queries, TQLM

CONTROLS: System Data Dictionary, PQM

DESCRIPTION: Takes a UDML query, parses it, optimizes it,
routes any queries involving distributed information to the
UDBMS and queries involving local information to A123 to be
translated back into the LDML.

232

0.i i ; . : : - .. . -: ..: :

%0

Universal Data Base

Data Dictionary Entry for Data Element

TYPE: DATA ELEMENT

DATE: 6 Oct 84

NAME: Parse Query Message (PQM)

DESCRIPTION: A control message indicating that the query in
question, which is in the UDML, is ready to be parsed and
optimized.

SOURCES: A121, A112

DESTINATIONS: A122

COMPOSITON: None

PART OF: Control Message 2

DATA CHARACTERISTICS: IMS, CODASYL, or Relational DMLs.

VALUES: N/A

ALIASES: None

23

233

Universal Data Base

Data Dictionary Entry for Data Element

TYPE: DATA ELEMENT

DATE: 6 Oct 84

NAME: Queries

DESCRIPTION: Encompasses any type of query (retieval,
update, or deletion) coming into the system or process. May
be only composed of local queries, universal queries, or
both.

SOURCES: N/A

DESTINATIONS: AO, Al, All, A12, A112, Alll

COMPOSITON: Local Queries, Universal Queries

PART OF: None

DATA CHARACTERISTICS: Universal, IMS, CODASYL, or Relational
DMLs.

VALUES: N/A

ALIASES: None

234

Universal Data Base

Data Dictionary Entry for Data Element

TYPE: DATA ELEMENT

DATE: 6 Oct 84

NAME: System Data Dictionary (SDD)

DESCRIPTION: The SDD represents the local data dictionary
and the extended local data dictionary combined. The SDD
indicates that both the LDD and ELDD may be required to
evaluate whether or not a particular query or set of data is
contained in the local system, the universal system, or both.
They will also be used to determine what particular data
format or DML a set of data or a query is in, and so forth.

SOURCES: N/A

DESTINATIONS: AO, Al, All, A112, A12, A121, A1211, A1212,
A1213, A122, A123, A1231, A1232, A1233,
A2, A21, A211, A212, A22, A221, A2211, A2212,
A2213, A222, A2221, A2222, A2223

COMPOSITON: Local Data Dictionary (LDD), Universal Data

Dictionary (UDD)

PART OF: N/A

DATA CHARACTERISTICS: N/A

VALUES: N/A

ALIASES: None

235

~~~~~~.. .-.... .- -... . . ....... . .,.,." .- - ... .- .. • .--.-... - . , -. - .



R 310 K W. - - T T T- - -

A

Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: A2222

NAME: Translate DBTG Data to Universal Format

INPUTS: Local Data

OUTPUTS: Universal Data Data

CONTROLS: System Data Dictionary

DESCRIPTION: Takes a data package in the DBTG format and
translates it to the universal format.

2

236



Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: A2221

NAME: Translate IMS Data to Universal Format

INPUTS: Local Data

OUTPUTS: Universal Data Data

CONTROLS: System Data Dictionary

DESCRIPTION: Takes a data package in the IMS format and
translates it to the universal format.

2

~237



Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: A2223

NAME: Translate System R Data to Universal Format

INPUTS: Local Data

OUTPUTS: Universal Data Data

CONTROLS: System Data Dictionary

DESCRIPTION: Takes a data package in the System R format and
translates it to the universal format.

2

238

- :7,Li.;~.i- ~:<-- ~.. -- V-



Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: A2121

NAME: Translate Data to Local Format

INPUTS: Universal Data

OUTPUTS: Local Data

CONTROLS: System Data Dictionary, TDLM

DESCRIPTION: Translates a data package in the universal
format to the universal format.

239



Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: A222

NAME: Translate Data to Universal Format

- INPUTS: Local Data

OUTPUTS: Universal Data

CONTROLS: System Data Dictionary, TDUM

DESCRIPTION: Takes a data package in the local format and
translates it to the universal format.

240



Universal Data Base

Data Dictionary Entry for Data Element

TYPE: DATA ELEMENT

DATE: 6 Oct 84

NAME: Translate Data to Local Model (TDLM)

DESCRIPTION: Control message indicating that a data package
should be translated from the universal model/format to the
local model/format.

SOURCES: A212

DESTINATIONS: A221

COMPOSITON: N/A

PART OF: Control Message 1

DATA CHARACTERISTICS: N/A

VALUES: N/A

ALIASES: None

.24

L . . .. ..-. :-.' ... .:-: . . - .. 5.. _. -.. .. . -, .. ._ .. -... . . .... .- :.v.-. .-. '...



Universal Data Base

Data Dictionary Entry for Data Element

TYPE: DATA ELEMENT

DATE: 6 Oct 84

NAME: Translate Data to Universal Model (TDUM)

DESCRIPTION: Control message indicating that a data package
should be translated from the local model/format to the
universal model/format.

SOURCES: A212

DESTINATIONS: A222

COMPOSITON: N/A

PART OF: Control Message 1

DATA CHARACTERISTICS: N/A

VALUES: N/A

ALIASES: None

242

i .i. . -- -



Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: A1212

NAME: Translate DBTG to Universal DML

INPUTS: Local (DBTG) Queries

OUTPUTS: Universal Queries

CONTROLS: System Data Dictionary

DESCRIPTION: Takes a LDML DBTG query and translates it to
the UDML. Note: A given LDBMS may support more than one
type of DBMS. All systems will not necessarily have A1231,
A1232, and A1233. They will only have the ones they need.

243

0



Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: A1211

NAME: Translate IMS to Universal DML

INPUTS: Local (IMS) Queries

OUTPUTS: Universal Queries

CONTROLS: System Data Dictionary

DESCRIPTION: Takes a LDML IMS query and translates it to the
UDML. Note: A given LDBMS may support more than one type of
DBMS. All systems will not necessarily have A1231, A1232,
and A1233. They will only have the ones they need.

244

'" " "" " . . " . . ""I' - . . . -" " '' - .> . ' " - - - '. ' . --- ' - .- . ' - ". - -- i . --



Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: A1213

NAME: Translate System R to Universal DML

INPUTS: Local (System R) Queries

OUTPUTS: Universal Queries

CONTROLS: System Data Dictionary

DESCRIPTION: Takes a LDML System R query and translates it
to the UDML. Note: A given LDBMS may support more than one
type of DBMS. All systems will not necessarily have A1231,
A1232, and A1233. They will only have the ones they need.

245
.4



Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: A2212

NAME: Translate to DBTC Data Format

INPUTS: Universal Data

OUTPUTS: Local Data

CONTROLS: System Data Dictionary

DESCRIPTION: Takes a universal data package and translates
it to the DBTG data format.

246



Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: A2211

NAME: Translate to IMS Data Format

INPUTS: Universal Data

OUTPUTS: Local Data

CONTROLS: System Data Dictionary

DESCRIPTION: Takes a universal data package and translates
it to the IMS data format.

247

-* * - *K.-.7F-.



Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: A2213

NAME: Translate to System R Data Format

INPUTS: Universal Data

OUTPUTS: Local Data

CONTROLS: System Data Dictionary

DESCRIPTION: Takes a universal data package and translates

it to the System R data format.

248



Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: A123

NAME: Translate to Local DML

INPUTS: Universal Queries

OUTPUTS: Local Queries

CONTROLS: System Data Dictionary, TQLM

DESCRIPTION: Takes a UDML query and translates it to the
LDML.

249

. - . .- *. - - . .-.-. ~~-*: : - * *. -- * -V.**.



TV. . . . . ..r

Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: A121

NAME: Translate to Universal DML

INPUTS: Local Queries

OUTPUTS: Universal Queries, PQM

CONTROLS: System Data Dictionary, TQUM

DESCRIPTION: Translates a LDML to the UDML.

I-25

250



S1

Universal Data Base

Data Dictionary Entry for Data Element

TYPE: DATA ELEMENT

DATE: 6 Oct 84

NAME: Translate Query to Local Model (TQLM)

DESCRIPTION: Control message indicating that a query should
be translated from the UDML to the LDML.

SOURCES: A112

DESTINATIONS: A123

COMPOSITON: N/A

PART OF: Control Message 2

DATA CHARACTERISTICS: N/A

VALUES: N/A

ALIASES: None

251

_.-m. .. -.



% * K:..Universal Data Base
Data Dictionary Entry for Data Element

TYPE: DATA ELEMENT

DATE: 6 Oct 84

NAME: Translate Query to Universal Model (TQUM)

DESCRIPTION: Control message indicating that a query should
be translated from a LDML to the UDML.

SOURCES: A112

DESTINATIONS: A121

COMPOSITON: N/A

PART OF: Control Message 2

DATA CHARACTERISTICS: N/A

VALUES: N/A

ALIASES: None

2

0

252

. i . . .
,

.
i



I.°

Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: A1232

NAME: Translate Universal to DBTG DML

INPUTS: Universal Queries

OUTPUTS: Local (DBTG) Queries

CONTROLS: System Data Dictionary

DESCRIPTION: Takes a UDML query and translates it to the
LDML. Note: A given LDBMS may support more than one type of
DBMS. All systems will not necessarily have A1231, A1232,
and A1233. They will only have the ones they need.

253

40



Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: A1231

NAME: Translate Universal to IMS DML

INPUTS: Universal Queries

OUTPUTS: Local (IMS) Queries

CONTROLS: System Data Dictionary

DESCRIPTION: Takes a UDML query and translates it to the
LDML. Note: A given LDBMS may support more than one type of
DBMS. All systems will not necessarily have A1231, A1232,

* and A1233. They will only have the ones they need.

254

o°

.. .- . . . .-: -
. . . . . . . . . . a. .. . . . . .



Universal Data Base

Data Dictionary Entry for Activity

TYPE: ACTIVITY

DATE: 6 Oct 1984

NUMBER: A1233

NAME: Translate Universal to System R DML

INPUTS: Universal Queries

OUTPUTS: Local (System R) Queries

CONTROLS: System Data Dictionary

DESCRIPTION: Takes a UDML query and translates it to the
LDML. Note: A given LDBMS may support more than one type of
DBMS. All systems will not necessarily have A1231, A1232,

* and A1233. They will only have the ones they need.

255



Universal Data Base

Data Dictionary Entry for Data Element

TYPE: DATA ELEMENT

DATE: 6 Oct 84

NAME: Universal Data

DESCRIPTION: Encompasses any type of data coming into the
system or process which is formatted according to the UDBMS's
data format.

SOURCES: A2, A22, A222, A2221, A2222, A2223

DESTINATIONS: A221, A2211, A2212, A2213

COMPOSITON: Data in UDBMS format.

PART OF: Data

* DATA CHARACTERISTICS: UDBMS format.

VALUES: N/A

ALIASES: None

4

K



Universal Data Base

Data Dictionary Entry for Data Element

TYPE: DATA ELEMENT

DATE: 6 Oct 84

NAME: Universal Queries

DESCRIPTION: Encompasses any type of query coming into the
- system or process in the UDMfL.

V. SOURCES: Al, A12, A122, A1211, A1212, A1213

DESTINATIONS: A122, A1231, A1232, A1233, A123

COMPOSITON: N/A

PART OF: Queries

* DATA CHARACTERISTICS: UDML.

VALUES: N/A

ALIASES: None

257



Appendix K: Summary Paper for

Analysis and Specification of A Universal Data Model

For Distributed Data Base Systems

ABSTRACT: The environment of a heterogeneous dis-
tributed data base system is examined. The primary
goal being that of allowing for the effective com-
munication between heterogeneous Data Base Manage-
ment Systems (DBMS) in a distributed environment.
This communication is accomplished through an inter-
mediate mapping model, named the Universal Data
Model (UDM). Three models, the Canonical, Entity-
Relationship, and the Relational, are comparatively
evaluated as possible candidates and the relational
model chosen as the UDM. Examples of the DML and
DDL developed for the UDB are given. Several Data
Model mapping issues are discussed.

Introduction

Since the inception of Data Base Management Systems

(DBMS), their importance and impact on data processing has

grown rapidly. One of the problems facing DBMSs and their

users is the fact that while it would be very useful to allow

distinct data bases to communicate with each other, the dif-

ferent data models used by each makes this very difficult.

These different data models dictate how the data within the

data bases is structured and manipulated.

The goal of this thesis was to develop a "Universal Data

Base" (UDB) through which these distributed heterogeneous

data bases could communicate and exchange/share information.

The UDB is, of course, primarily logical in nature and pre-

sents its users with a universal representation of certain

subset of information (for which they are interested in) in

258

6.



which the actual physical location and structure of the data

is unimportant. The UDB, besides being a concept or an en-

vironment, is comprised of a Universal Data Model (UDM),

Universal Data Definition Language (UDDL), and Universal Data

Manipulation Language (UDML). After examining the UDB as a

whole, this thesis focused on the UDM and related mappings

needed.

Overview

The thesis effort being summarized in this paper sought

to permit heterogeneous DBMSs to communicate in a distributed

environment. The thesis effort primarily focused on selec-

ting a UDM and examining the necessary mappings between the

local data base models and the UDM. However, to accomplish

the selection of the 1UDM, a system requirements analysis was

necessary for the UDB as a whole. Therefore, much of the

thesis's effort involved this analysis. In this summary

paper, the high points of the system's analysis will be

discussed with the different candidates and selection

criteria for the UDM briefly described. These criteria are

then applied and a UDM choice specified. Sample DDL and DML

commands are shown and the more important DDL mapping issues

briefly discussed. This paper concludes with a summary of

what was accomplished and what was not.

System's Analysis

The UDB will function in an extremely complex environ-

259
9

• . .. ~~ ~~~~. . .. .. ' . . . .. . .... .. . ... , . .;
-. - " ." - - - . - & - -- . .- . - . - . . , - - .



ment with different data bases, different data models, differ-

ent users, and so forth. There are two major factors which

will most influence the design of the UDB. These are: (1)

the environment in which the UDB will function, and (2) the

user's view of the UDB. The highlights of both of these

factors are discussed in the following two subsections.

Environment. The major observations or conclusions of

the impact of the environment on the UDB are described below:

Observation 1: The current environment consists of in-
dependent, heterogeneous (or homogeneous) systems which
have already established data bases, application prog-
rams and procedures.

The heterogeneous nature of this environment applies not

only to the data base management systems that exist but also

the host computer systems. Further, heterogeneous, in the

DBMS context, not only indicates differences in the model

used but also the particular implementation of any given

model (i. e. two DBMSs using the same model could be differ-

ent because the model was implemented in a different way in

each model).

Observation 2: Given that the owners of these sys-
tems will be very reluctant, at least all at once,
to replace their older systems with any new systems,
rewrite their application programs and/or retrain
their people, the UDB will have to function in such
a way as to minimize any of the aforementioned activi-

* ties as much as possible.

Obviously, from a requirements standpoint, it would be

optimal to have the situation where the user could simply be

260



infor~ed that his system has been expanded to include more

information and other than that, nothing has changed. From

the design view, it would be very desirable to make everyone

switch over completely to a single new system. Neither of

the above viewpoints prove to be practical ones. The design

point of view is impractical for cost reasons; and the re-

quirements point of view because it presents some very tough

problems. The first of these problems is that if the user is

to view all the data as in his local system, then how will

the data actually outside his system be presented to him? In

what form will this data be presented? His local model may

not be able to express the structures and constraints of

another model effectively. Should a new, unrelated model be

used to present all of the global data to the user? If so,

* which model should be chosen? This will, of course, force

the user to learn the new model. If this model proves so

flexible, why not use it instead of the local one altogether?

Furthermore, what language will the local users work with?

Will they work in their local language, which would be trans-

lated into the universal language, or will they have to work

in the universal language? Finally, it should be noted that

the independent local systems might actually reside on the

same or different physical location on he same machine.

Observation 3: The UDB will function in an environment
in which the users are reasonably cooperative and non-
threatening to each other.

261



One of the attractive properties of a universal system,

besides merely increasing the amount of available informa-

tion, is that if certain subsets of information, e. g. per-

sonnel information, seemed particularly suited to a parti-

cular model, e. g. the relational, then all of the personnel

information of the independent systems could be moved to a

different data base system on the network. This is certainly

one of the more extreme benefits, or possible uses for the

UDB, but it does illustrate its potential. However, this

type of utilization, as well as any less elabo~rate use,

requires a cooperative and non-threatening environment. Even

simply allowing users access to other user's information re-

quires cooperation and a "non-threatening" environment. Data

security and integrity present problems. Users, perhaps com-

petitors, could seek to illegally access or modify informs-

mation of other users. At present, data base security meth-

ods do not provide cost and performance effective protection.

Observation 4: The UDB will best function within a
large governmental, military, or civilian organiza-
tion.

Unfortunately, at this time, it proves rather impracti-

ical to have the UDB tying together all of the data bases in

the "world". However, this does not really detract from the

value of the UDB. For the most part, it is large organiza-

tions that have the most need for the UDB, and the greatest

potential gain. Eventually, perhaps a nationwide or world-

262



wide UDB setup might be possible but not at this time. The

complex issues of data security prove too difficult.

Observation 5: The prime objective of the UDB is to
develop a model to allow the prominent three models to
interact.

The primary objective is not to develop a new superior

model. The development of a new superior model, while cer-

tainly beneficial, would not necessarily solve the problem of

networking the existing data base systems together. As noted

earlier, organizations are not going to want to give up their

present systems and investment, even for some new superior

model. If the universal model proves superior then the vari-

ous organizations may eventually convert. However, this will

hopefully not be a requirement for becoming part of a UDB

system.

Observation 6: There are particular instances where
each one of the three present models proves to be the
best model for that instance. Their elimination from
use may, therefore, not be optimal unless the new model
proves able to recognize all of the strengths of the
three models without their limitations.

Assuming that the new universal model does not prove to

be a superior model, having the different models will prove

useful to the users of the UDB. It is certainly true that

there exist data base instances wherein each iarticular model

will prove to be the best for that instance. Therefore, a

user of the UDB could have, for example, several relational

4and network data bases, and a few heirarchical. When a user

2634l
- - ~ ** *



decides to establish a data base, the user or UDBAC can

choose which one of the three models it would best fit. The

user, who may be used to working on relational systems, will,

in some fashion, deal with the new data base in either the

relational model or the universal model.

usrThe User's View. An important consideration is how the

userwillview the information in the UDB and how he/she will

interact with that information. Specifically, will the user

view the information within the UDB through his local model

and, therefore, use the local DML for queries or will the

user use the universal model and DML? It was decided that

because of the complexity in allowing the user to work within

his local model, he would be forced to work through the uni-

versal model and DML.

The Approach

There were several different possible approaches to

solving the requirements of the UDB. The approach taken by

the thesis in question was to use an intermediate data model

in which the local models would mapped into and the query

* processed through the universal model. It was decided, due

to the complexities of handling all of the variants of each

of the prominent three data models, that only one particular

4 version of each of the three would be considered as valid

local models. These three were: EMS for the heirarchical

model, DBTG for the network model, and the System R for the

relational model. It was further decided, that for now,

264



users would be restricted to using the universal model/

language for all universal queries (i. e. queries involving

information at more than one sight, a global query).

The UDM Candidates

Three models were chosen as possible candidates for the

UDM. These three models were chosen as representitives of

the various classes of models that now exist. The classifi-

cation used was based on how close the given model was to a

real application. The Canonical model by Martin represents

the totally logical model extreme. The Relational model

* represents the opposite end where the model is actually used

for DBMS applications. The Entity-Relationship model by Chen

represents the middle ground. It is a logical model, but is

heavily based on the three "real" models, the network, heir-

archical, and relational.

The Canonical Model. The Canonical model by Martin is

defined as:

a model of data which represents the inherent
structure of that data and hence is independent of
individual applications of the data and also of the
software or hardware mechanisms that are employed
in representing and using the data (10:235)."

r. The Canonical model was primarily developed to aid in

designing data bases and is as much a process as a model.

The model uses bubble charts and is a product of a process

called "Canonical Synthesis". Due to its incremental nature,

the canonical process (model and synthesis) proves to be

particularly good at handling dynamic data base instances.

265



- .-

The synthesis process is readily automated, although still

requiring some amount of human supervision and modification

for total effectiveness. The resulting canonical model de-

rived from the synthesis is independent of any model, per-

formance constraints, or particular machine, and is in third

normal form.

"A canonical database structure is a minimal non-
redundant model. Its records are in third normal
form (and fourth normal form). . . [and] is some-
times referred to as a 'conceptual schema'. A
canonical model can be represented as a network
(CODASYL), heirarchical (IMS), or relational
database system. A large canonical model may be
kept, updated, and designed by computer, to
represent overall the data which are the foundation
of a computerized enterprise (10:275-276)."

Entity-Relationship Model. Entity-Relationship (ER)

models are based on tables and graphs and were an outgrowth

Cof the designing of data bases using commercial DBMS. Due to

this fact, ER models bear a strong resemblance to the heir-

archical and network models.

The ER model discussed was proposed by Chen (2) in 1976

and is considered to be probably the best known of the ER

models (9:175). Originally, Chen's ER model was designed for

the purpose of data base design by allowing the specification

of an enterprise schema. An enterprise schema represents an

enterprise's view of its data, independent of storage or effi-

ciency considerations. Unlike the other ER models, Chen's ER

model's conceptual schema is not necessarily directly access-

ible by a DBMS. The ER model only documents the logical pro-

717 perties of the data base and may or may not be directly

266.o* * *.. ".* *- -



accessible.

The Relational Model. The relational model was origi-

nally proposed by Codd and arose out of a desire to bring

some sort of formalism in addressing various issues and prob-

lems in the area of data base design. The obvious answer was

to use already formulated mathematical theory. The following

three observations/definitions provide a good idea of what

the relational model is.

"The relational approach to data is based on the
realization that files that obey certain con-
straints may be considered as mathematical
relations, and hence that elementary relation
theory may be brought to bear on various practical
problems of dealing with data in such files
(3:65)."

"Definition: Given a collection of sets Dl, D2,
* ,DN (not necessarily distinct), R is a relation

on those n sets if it is a set of ordered n-tuples
UJ~ <dl, d2, . . so dn> such that dl belongs to D1, d2

belongs to D2,. . . .,. dn belongs to DN. Sets Dl,
D2, D3 are the domains of R. The value n is the
degree of R (3:83)."

"The relational model, as defined by Codd [C0D82]
consists of three basic parts, a collection of
relations that describe the logical structure of
the database, a collection of operators to mani-
pulate data stored in the database, and a collec-
tion of general integrity rules that constrain the
set of valid states of the database (8:47-48)."

The relational model is a very simple and powerful model

* which has proved to be very popular in recent years.

The Universal Data Model

In this section, each of the three candidates is des-

cribed in terms of each model's strengths and weaknesses in

267



the universal environment.

Relational Model. The relational model possesses a

.strong capability in a UDB application. The relational model

is a proven model, its capabilities are known (although debat-

ed). The necessary mapping algorithms to the other two

models have already been developed, or at least examined.

The relational model is very simple and easy to learn and

use. A summary of the relational model's strengths are

listed below:

RSl. Simple and easy to learn and use.

The key to this strength is the fact that the relational

model is not only easy to use but also easy to learn. The

latter factor will prove especially useful if it is decided

that the users will have to work in the universal model and

language.

RS2. Table format lends itself well to a distributed
environment.

This is, perhaps, the most important strength for the

relational model. The table format of the relational model

lends itself particularly well to the UDB application. It

aides in presenting unrelated information and additional in-

formation since these can be handled simply by the addition

of more tables (relations).

RS3. A well established model. Its capabilities are
6 known as well as its weaknesses. Many of the map-

pings (relational to DBTG, etc.) have been done
V.'. or at least examined.

268



S -. Obviously, having an established model will make the

implementation and acceptance of this model somewhat easier.

There would be some savings in terms of the fact that the

relational to relational mappings would be easier and the

relational users would have to make a minimal adjustment.

Introducing a relatively unknown model would involve more

work and research then with this model.

RS4. The relational model shields the user from the
underlying data formats and complexity of the
data structures.

The primary value of this strength, in the UDB applica-

tion, is the reduction in complexity.

RS5. It has a high level, nonprocedural DML which has
proved to be easier to use and more productive for
programmers (6:4).

Although the it would be desirable for the UDML to

support both procedural and nonprocedural operations, it is

important to note that it may not be practical nor preferably

to support both. Nonprocedural languages are generally

easier to use and more productive for the programmers. Fur-

thermore, it may not be possible to support navigational oper-

ations in a distributed environment.

RS6. Storage and data structures are very simple
(6:4).

A minor strength in this particular application.

0 RS7. Access paths don't have to be predefined (cont-
rary to procedural languages/models) (6:4).

This is a particularly good feature of the relational

model. Besides increasing the flexibility and power of the

269

J.



model, this feature will prove extremely beneficial in a dis-

tributed environment.

RS8. The relational model has a fast response time to
ad hoc queries which are considered to be a high-
percentage of the queries submitted (6:5).

Certainly a strength for a regular DBMS, and still to

some extent the UDBMS, but its impact in the UDBMS will not

be very significant since the model would only be functioning

as a communication media. It would not be actually process-

ing queries (the LDBMSs would be).

RS9. The relational model handles M:M relationships
extremely well.

M:M relationships can prove difficult to implement. The

relational model handles this situation quite well because

the M:M relationship, in terms of the data structures, is

purely logical and is not physically set up.

RS1O. The relational DML is highly parseable and well
suited to optimization.

This is another strength which will be very valuable in

the UDB application due to the distributed nature of the

application.

The weaknesses of the relational model are summarized

below:

RW1. The relational model is one which has been imple-
mented and, therefore, has taken into considera-
tion machine efficiency, etc. Perhaps, since the
desired model need only appear to be a real DBMS,
a purely logical model (canonical or ER) might be
more flexible or better suited to the UDM role.

RW2. Even though the relational model (and operations)
can be mapped to the network and heirarchical
models (nonprocedural to procedural), perhaps it

270



would be more efficient to have a model with the
built-in ability to do procedural operations
rather than just being mapped into them.

RW3. The relational model cannot convey procedural
operations.

If the relational model is chosen as the UDI4, universal

procedural operations will not be supported. Obviously, pro-

cedural operations could be mapped into the relational model

but this would done taking into consideration the entire

query. Essentially, a user could not single step through a

distributed data base without extreme difficulty in most

cases and almost impossible in others.

RW3. In general, perhaps a better approach would be to
tailor the UDM to its environment rather than
trying to fit the relational model into that role.

RW4. All constraints are not explicit.

Selection Criteria

This section describes the set of criteria used in

comparing the three models.

Criteria #1: Simplicity and User Friendliness.

Criteria #2: Ability to depict all three models.

This particular criteria indicates how well the model

can present the data base in the three different models. It

will determine if the users will work in their local or the

universal model.

Criteria #3: Ability to handle nonprocedural operations.

Criteria #4: Ability to handle procedural operations.

Criteria #5: Implementation benefits.

271



This criteria evaluates how much of a benefit will be

derived, in terms of implementation, from choosing this

model. This criteria is best shown by the relational model

which has already been implemented with many of the "bugs"

worked out.

Criteria #6: Ability to function in distributed environment.

This criteria evaluates how well the model handles the

problems of distributed information being represented and

manipulated.

Criteria #7: Ability to represent different relationships.

This criteria centers on how well the model represents

the different relationships (1:1, 1:M, M:M).

Criteria #8: Flexibility in specification of relationships.

This criteria centers on how whether or not the model

has predefined or non-predefined relationships.

Criteria #9: Ability to incorporate different user views.

Criteria #10: Ability to support all DBMS functions.

Criteria #11: Ability to express constraints.

This criteria evaluates how explicit the constraints are

in each model and how many different constraints can be ex-

pressed.

Application of Criteria

In this section the criteria just described are weighted

and applied against each of the UDM candidates. The models

are rated comparatively for each criteria (see Tables I and

U. II). The model which best satisfies that criteria receives a

272

°° . .. , .. . - . • . , . . . °.- . . . - . . . . , - Oo . o - o. 
o

.i, .",": "-%."°-. -. ".:......".'..."-'.-..".". ."'.- .. '.."..."."...". .•.-.'.. . . . " ... . '.-"'-'.-" '.''-''"-'. -- "'-,,.' ,



three, the second best a two, and third best a one. If two

models tie, they are both given the same score. Each criter-

ia is weighted on a scale of one to five with five being the

most weight. The criteria are weighted according to which

are more important. The more important the criteria, the

more weight it is given.

The Universal Model

An examination of Table II brings about the unfortunate

observation that the relational model and ER model have tied

for the honor of being the UDM. Obviously, only one model

* can be used for this thesis. Therefore, which one? Both the

relational and the ER models offer certain advantages al-

though they both come out equal in overall terms. To break

this tie, criteria #3 is removed from consideration. The

justification for this is the fact that the support of pro-

cedural operations in the distributed environment is imprac-

tical to implement. This brings the point totals to 67

(relational), 61 (ER), and 46 (canonical). Therefore, the

relational model is chosen as the UDM.

Table I. Summary of Criteria

1. Simplicity and User Friendliness
2. Ability to depict all three models.
3. Ability to handle nonprocedural operations.
4. Ability to handle procedural operations.

*5. Implementation benefits.
6. Ability to function in distributed environment.
7. Ability to represent different relationships.
8. Flexibility in specification of relationships.
9. Ability to incorporate different views.

10. Ability to support all DBMS functions.
*11. Ability to express constraints.

273



Table II. Comparative Evaluation of Three UDM Candidates

=Criteria - Weight - Relational a ER = Canonicala

a 1 a 2 a3 a 2 a 2=

a 2 a 4 a1 a 3- 2

3 a 3 a3 a 2- 1a

43 a3a 1 3

8 3 a 2 a1s

a 10 a 1 a3a 3= 3-

a 11 a 3 a2 s 3= 1

Total a 30 a 70 s70s 55a

Sensitivity Analysis

The purpose of this section is to investigate how sensi-

tive the results of the evaluation weighting is to change.

The approach to this analysis is to choose the two most signi-

ficant (#2 and #6) criteria and evaluate the resulting change

in the final totals from changing the weight factor in each

up (a) or down (b) by one. This will be done with all eleven

0 criteria (Start) and with criteria #4 removed (Minus). The

table below depicts the resulting changes:

274



"D-fl15i 856 RNRLVSIS AND SPECIFICATION OF A UNIVERSAL DATA MODEL44
FOR DISTRIBUTED DATA..(U) AIR FORCE INST OF TECH
bRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. A J JONES

UNCLASSIFIED 14 DEC 84 AFIT/GCS/ENG/84D-li F/ 9/2 NL

IEEEmomos



111111.0 L I 26 2L4

-1.8

4 (1111---1.2511111 1.4 .

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

• .~ ~~ ,-L ..-.**. T ... i..TII



Table III. Sensitivity Analysis Results

-Crit. #-Weight -Rel. Total -ER Total -Canon. Total-

m Start - 30 - 70 u 70 -55

:.2a - 5 - 71 73 -5-

= 2b - 3 m 69 u 67 m53

m 2a,6b u 9 u 68 u 71 m56

m 2b,6b m 7 m 67 m 65 m52

uMinus 4 27 u 67 m 61 m46

m 2a m 5 u 68 m 64 u48

m 2b m 3 u 66 m 58 m44

m 6b u 4 m 64 m 59 u45
mum ..... mu .... ..um.. mu...ummmmm.u.u.mmmmmu u ummmmm u u

2a,6b m 9 m 65 m 62 u47

.W2b,6b u 7 u 64 m 56 u43

An examination of the above results indicates that the

original criteria set (criteria #4 included) was very sensi-

tive to changes in the weight factors. The second criteria

set (criteria #4 removed) is much less sensitive to these

changes and shows the relational model to be the better

choice as the universal model (according to the given crite-

ria and weights).

Final Design Decisions.

In the course of this thesis, many issues have been

raised about the environment, users, and so forth. The way

in which these issues were to be resolved was to a great ex-

275



-' tent dependent on the model chosen for the UDM. Therefore,

having made that decision, the following final design deci-

sions are presented.

Design Decision 1: Local users will be required to
utilize the UDBMS for queries which involve global
data. Local users will still be able to utilize
their local model/DML for "local only" queries.

Design Decision 2: The data contained within the
global system will be presented to the user in a
relational format.

Design Decision 3: The UDB, when evaluating any
query in the local DML, will notify the user if and
when there is additional data in the UDBMS for that
local query.

Design Decision 4: Procedural operations will not
be supported in the UDBMS. Procedural operations
will be mapped from the UDML to those LDBMS support-
ing procedural operations but the user may not
write UDML commands which "navigate" through the
UDB.

Design Decision 5: The UDBMS will be a relation-
ally based language but not necessarily any pres-
ently designed system.

Design Decision 6: The UDML will support embedded
and interactive capabilities which are syntacti-
cally similiar.

Design Decision 7: Direct Reference will be sup-
ported.

Design Decision 8: Null values will be supported
provided that those values are not primary key
values.

Design Decision 9: The UDML will have separate
constructs for selection and action specification.

Design Decision 10: The UDML will support selec-
tion nesting.

Design Decision 11: The UDML will support a form
of record-at-a-time capability. The records will
be acquired a set-at-a-time but may be analyzed

276

. .. . °°., "-" - -



individually in the action specification portion of
a query.

The Universal Data Definition Language

The relational DML specified for the UDB is based on

System R (see Date (3)). An example data base is defined

below:

( Create Data Base MEDICAL DATA BASE (

Domain char-15 Character (15)
Domain char-20 Character (20)
Domain code-type Integer (NONULL)
Domain #type Integer (NONULL)
Domain small-int Small Integer
Domain var-string Character Var

Create HOSPITAL (
Unique Hospital code: code-type,
name: char-15,
address: char-20,
phone#: #type,
# of beds (Small Integer),
Keys are Hospital code )

Create LAB (
Unique Lab#: #type,
Hospital code: code-type,
name: char-20,
address: char-20,
phone#: #type,
Keys are Lab# )

Create PATIENT-DOCTOR
Alternate names are ATTENDING DOCTOR

(* Treat as normal relation *)
Alternate names are PAT-ATTD

(* List of patients a given doctor is seeing *)
Alternate names are PATIENTS ATTENDED

(* List of patients a given doctor is seeing *)
Alternate names are ATT-DOC

S(* List of doctors attending given patient *)
Alternate names are DOCTORS ATTENDING

(* List of doctors attending given patient *)
Unique Doctor#: #type,
Unique Registration#: #type,
Keys are All )

277



( Expand Data Base MEDICAL DATA BASE
C User Function LABS-SERVING-A-HOSPITAL

Input Arguments are (hosp-name: code-type)
Output Arguments are (lab-name: #type)
Retrieve
From LAB known by L,

HOSPITAL-LAB known by HL,
HOSPITAL known by H,

( Where hosp-name - H.name and
H.Hospital code = HL.Hospital code and
L.Lab# - HL.Lab#

( Return (L.name Ordered by Ascending L.name))
END FUNCTION ) )

The Universal Data Manipulation Lannuaae

The relational DML specified for the UDB is based on a

language called QUEST developed by Housel (5). Sample que-

ries are presented below:

1. List all hospitals and their addresses.

"" ( Retrieve
From HOSPITAL known by H,
( Return ( H.name, H.address ) ) )

* 2. List all doctors serving in hospitals with over 250
beds.

. Retrieve
From HOSPITAL known by H,

DOCTOR known by D,
( Where H.# of beds > 250 and
H.Hospital code - D.Hospital code
" Return (D.name)) ) )

3. List all doctors serving in hospitals in Tollersville.

( Retrieve
From HOSPITAL known by H,

DOCTOR known by D,
HOSPITAL LOCATION known by HL,
( Where H.Hospital code - D.Hospital code

and HL.code - "TLV"
( Return (D.name)) ) )

278

.".''', .' ,''.' ... ''" .'° ''-'°'. - . . . . . . . . . .... .. . .'y . _ : t . " , - - .. .. . . .*



4. List all doctors who attend over 15 patients and list
those patients under each doctor's name.

( Retrieve
From DOCTORS known by D,

DOCTOR-PATIENT known by DP,
( Where COUNT (D.Doctor# - DP.Doctor# ) > 15
Return (D.name, 2RLF,
( Retrieve
From PATIENT known by P,
( Where D.Doctor# - DP.Doctor# and
P.Registration# - DP.Registration#
( Return (P.name ordered by Ascending P.name,

2RLF) ) ) ) ) )

5. Add a 5% pay raise to all staff employees earning over
$16,000 and a 10% raise to those earning under $16,000.
E shift employees earn an additional 2% pay raise.

( Update
From STAFF known by S,
(Case

S.salary > 16000:
( Case

S.shift - 'El: S.salary :- S.salary * 1.07,
Otherwise: S.salary :- S.salary * 1.05 )

Otherwise:
(Case

S.shift w 'E': S.salary :- S.salary * 1.12,
Otherwise: S.salary :- S.salary * 1.1 )

Universal Data Definition Lannuaae Mappings

Many different important issues were raised when the

UDDL mappings were examined. The conclusions of these issues

are summarized below:

Redundant data: The UDB will allow for partial redun-
dancy in the underlying data bases.

Universal Query Processing: The UDB will possess ac-
tual processing capability at the universal level. The
UDBAC computer will provide this capability when need-
ed. When a query requires that various subqueries be
brought together, this will be done by the UDBAC
computer (a data base computer) or a relational com-
puter on the network.

279



System R Constraints: (1) All system R systems will be
required to specify which attributes within a relation
are the primary or composite keys. (2) The System R
systems are as described by Date (3).

IMS Constraints: (1) All IMS systems will be required
to specify which attributes within a segment uniquely
identify the information within that segment. (2) All
IMS systems will not allow duplicate keys. (3) The
IMS systems are as described by Date (3).

DBTG Constraints: (1) All DBTG systems will be re-
quired to specify which attributes within a record
uniquely identify the information within that record.
(2) Fixed retention is a user-policed retention class.
(3) Automatic insertion is not supported. (4) Dupli-
cate keys are not allowed. (5) The DBTG system is as
per described by Date (3).

Normal Forms: Only first normal form is guaranteed by
the UDB. This is because of underlying constraints in

9 the IMS and DBTG data bases.

DBTG to UDDL Mapping Algorithm: (1) Records are con-
verted directly to a relational format. (2) Struc-
tural sets are also converted directly to a relational
format. (3) Sets which have an optional retention
class are converted into a relational format. (4) All
remaining sets are used to indicate where to add the
primary key of the owner to the member record, now rela-
tion. All redundant attributes and relations are re-
moved.

IMS to UDDL Map-ping Algorithm: (1) All segments are
converted to a relational format. (2) All children
add the primary key of their parent to their relation.
(3) Redundant attributes and relations are removed.
(4) Added attributes are removed if when paired with
another attribute in more than one relation.

System R to UDDL Mapping Algorithm: Merely a snytax
translation.

Conclusion

This section concludes this paper by commenting on the

UDK and examining what was accomplished in this thesis and

what was not.

280

0 % "*



System R Constraints: (1) All system R systems will be
required to specify which attributes within a relation
are the primary or composite keys. (2) The System R
systems are as described by Date (3).

INS Constraints: (1) All IMS systems will be required
to specify which attributes within a segment uniquely
identify the information within that segment. (2) All
IMS systems will not allow duplicate keys. (3) The
IMS systems are as described by Date (3).

DBTG Constraints: (1) All DBTG systems will be re-
quired to specify which attributes within a record
uniquely identify the information within that record.
(2) Fixed retention is a user-policed retention class.
(3) Automatic insertion is not supported. (4) Dupli-
cate keys are not allowed. (5) The DBTG system is as
per described by Date (3).

Normal Forms: Only first normal form is guaranteed by
the UDB. This is because of underlying constraints in
the IMS and DBTG data bases.

DBTG to UDDL Mapping Algorithm: (1) Records are con-
verted directly to a relational format. (2) Struc-
tural sets are also converted directly to a relational
format. (3) Sets which have an optional retention

-* class are converted into a relational format. (4) All
remaining sets are used to indicate where to add the
primary key of the owner to the member record, now rela-
tion. All redundant attributes and relations are re-
moved.

INS to UDDL Mapping Algorithm: (1) All segments are
converted to a relational format. (2) All children
add the primary key of their parent to their relation.
(3) Redundant attributes and relations are removed.
(4) Added attributes are removed if when paired with
another attribute in more than one relation.

System R to UDDL Mapping Algorithm: Merely a snytax
translation.

. Conclusion

This section concludes this paper by commenting on the

UDM and examining what was accomplished in this thesis and

what was not.

280



An Augmented Relational Model

As the UDE system was analyzed and developed through

this thesis, it became obvious that the relational model, as

it stood, would require some modifications to fully satisfy

the UDB requirements. The reason for these modifications

come from attempting to map nonrelational structures and

* operations into a relational model. It is thought that it

will require even further modifications after the DML require-

ments are fully analyzed. The present modifications, rela-

tively minor, do not change the basic nature of the relation-

al model, they merely augment it. It is suggested that the

additional integrity constraints suggested by Date (3) be

fully supported. The following are characteristics of the

the augmented relational model used:

1. Guarantees only 1NF.

2. Alternate names construct to handle DBTG struc-
tural sets.

3. Unique associations clause to alert users to a DBTG
fixed retention set.

The following additional characteristics are anticipated:

1. Support of Domain Integrity.

2. Support of Immediate Record State Constraint.

*3. Support of Immediate Record Transition Constraint.

4. Constraint or construct to support DBTG Automatic
insertion.

5. Constraint or construct to support the Fixed Reten-
tion class in the DBTG DBMS.

281



Accomplishments. Although this thesis has not implement-

ed any part of the UDB nor has it really fully investigated

all of the issues raised, it does provide a good starting

point for further investigation. The following list indi-

cates what was accomplished in this thesis:

1. Literature search of current research into the area
of a UDM and/or UDB.

2. An analysis of the requirements for a UDB.

3. The selection of a UDM.

4. An examination of the UDDL mapping issues.

5. Syntax specification for a UDML and UDDL.

Universal Data Model Deficiencies. Although the

Relational model was chosen as the best model, of those

examined, it is obvious that the UDM, and UDB, as presented

in this thesis have several deficiencies or otherwise unde-

sired qualities. It is hoped that these undesired qualities

will be eliminated by the time the UDB is actually implement-

ed. The following list summarizes those deficiencies:

1. The UDB is restricted to dealing with one particular
implementation of each of the three different
models.

2. Each of those three particular implementations (IMS,
DBTG, and System R) have "unnatural" constraints
imposed upon them by the UDB.

3. The users of the UDB are forced to work in the UDML.

4. Using the UDB may require modifications to the under-
lying data bases.

5. DML mappings have not been examined to insure that
they can be completely supported.

282

................................................ .. ..... .......



6. The DDL mappings examined have not been fully tested
to insure that they are complete and accurate.

7. The relational model used in this thesis could,
perhaps, be augmented further to perform better.
This reevaluation should be done after the DML re-
quirements have been closely examined.

Concluding Comments. The concept of a UDB has great po-

tential to radically increase the power and usefulness of

DBMSs. This thesis has taken the first step towards the

complete development of the UDB and has provided the neces-

sary foundation for its continued development.

283

40..



BiblioRraphy

1. Cardena!, A. F. and Pirahesh, M. H. "The E-R Model in a
Heterogeneous Data Base Management System Network Archi-
tecture," Entity-Relationship Approach to Systems
Analysis and Design, edited by P. P. Chen. Amersterdam:
North-Holland Publishing Company, 1980.

2. Chen, Peter P. "The Entity-Relationship Model--Toward a
Unified View of Data," ACM Transactions on Database SYS
tems, 1: 9-36 (March 1976).

3. Date, C. J. An Introduction to Database Systems, third
edition. Addison-Wesley Publishing Company, Inc.,
Reading, Massachusetts, 1982.

4. Date, C. J. "An Introduction to the Unified Database
Language (UDL)," Sixth International Conference on Very
Large Data Bases, 15-32 (1980).

5. Housel, B. C. "QUEST: A High-Level Query Language for
Network, Hierarchical, and Relational Databases," Im-
proving Database Usability and Responsiveness, edited by
Peter Scheuermann, New York: Academic Press, 1982.

6. Huang, Kuan-Tsae, and Davenport, Wilbur B. "Query Pro-
cessing in Distributed Heterogeneous Databases," LIDS-P-
121, Department of Electrical Engineering and Computer
Science and the Laboratroy for Information and Decision
S3-Lems, M.I.T., Cambridge, Mass, 02139 (December 1981)
(AD-115981).

7. Larson, James A. "Bridging the Gap Between Network and
Relational Database Management Systems," IEEE Computer,
16: 82-92 (September 1983).

8. Lillie, Major Charles W. "The Coalescing of Network
Structured Database Performance with Relational Algebra
Productivity," Dissertation. School of Arts and Sciences,
University of Soutwestern Louisiana. (Not yet published).

9. Lochovsky, Frederick H., and Tsichritzis. Data Models.
Prentice-Hall, Inc., Englewood Cliff, New Jersey, 1982.

10. Martin, James. Principles of Data-Base Management.
Prentice-Hall, Inc., Englewood Cliff, New Jersey, 1976.

11. Pressman, Roger S. Software Engineering: A Pract-
ioner's Approach. McGraw-Hill Book Company, New York,
New York, 1982.

2

- 284



12. Ullman, Jeffrey D. Princioles of Database Systems,
second editon. Computer Science Press, Rockville, Mary-
land, 1982.

28



VITA

Second Lieutenant Anthony J. Jones was born on 13 June

1961 in Muscatine, Iowa. He graduated from Kaiserslautern

American High School, West Germany, in 1979 and attended

Indiana University from which he recieved the degree of

Bachelor of Arts in Computer Science in May 1983. Upon

graduation, he received a commission in the USAF through the

ROTC program. He entered the School of Engineering, Air

Force Institute of Technology, in May 1983.

Permanent address: 1487 Shorewood Place

Lakeland, Florida 33803

296

4 q



q,

Unclassifid
SCCURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
is REPORT SECURITY CLASSIFiCATION lb. RESTRICTIVE MARKINGS

Unclassified
2s, SECURITY CLASSIFICATION AUTHORITY 3. DISTRI BUT 10"IIAOLkil 4 S4 70k F0q1IO AM 190-17,

OECLASSIFICATION/DOWNGRADINGSCHEDULE Dca. lor , •- - tlevelopo

Air iI-:. . t,. . AA IC)

£ PERFORMING ORGANIZATION REPORT NUMBERAS) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/84D-11

6& NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
d app io bit )

School of Engineering AFTT/FN_
6c ADDRESS eCIty. State and AIP Code 7b. ADDRESS (City. State and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

Go NAME OF FUNDING/SPONSORING 8Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (it applicable)

Rome Air Develooment Crntpr RAfrC/COf T__
Sc. ADDRESS oCity, State and ZIP Code) 10. SOURCE OF FUNDING NOS.

HQ Rome Air Development Center PROGRAM PROJECT TASK WORK UNIT

Griffiss AFB, NY 13441 ELEMENTNO. NO. NO. NO.

11 TI TLE (include Security Clasification)

See box 19.
12. PERSONAL AUTHORS)

m i Ant;hony J. Jenny, PI,, 21, IAFTOR OT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT

13. TYPE OF REPORT TIFRME COVERED1429H. _h~i FROM _ __TO ___ 8412]41

" 16. SUPPLEMENTARY NOTATION

1 COSATI CODES \8. SUBJECT TERMS (Continue on reverse if necessary and identify by block numberp

FIELD GROUP SUa. GR. ata Base, Relational Data Base, Data Model, Heterogeneous
09 Environment, Distributed Environment,

19. ABSTRACT iContinue on reverse if necessary and identify by block number)

Title: Analysis and Specification of a Universal Data Model for Distributed Data Base
Systems.

Thesis Chairman: Dr. Thomas C. Hartrum -

* 20, DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED a SAME AS RPT OTIC USERS Unclassified
22. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL

Include ;PA FV4 ode,

Dr. Thomas C. Hartrum 513-255-3576 AFIT/ENG

00 FORM 1473, 83 APR CDITION OF I JAN 73 IS OBSOLETE. Uncl assi fied
287 SECURITY CLASSIFICATION OF THIS PAGE

", "- • ..- . . - --. - . • . '.. . .... " " -' - " - 6 " ' .. ,.', " . -" ., . - '-. ." , . -.



Uncl ass ified
SECURITY CLASSIFICATION OF TIS PAGE

i 19. -A Universal Data Model (UDM) was developed for distributed Data Base

Management Systems (DBMS). The primary goal was to allow for the effective

communication between heterogeneous, distributed DBMSs. A system requirements

analysis was first performed for a Universal Data Base (UDB). Three models

were selected and investigated as candidates for the UDM: the Canonical, Entity-

Relationship, and Relational. Due to the complexities of the UDB, thr, user was

restricted to writing universal queries in a Universal Data Manipulation

Language (UDML) and was restricted to only one version of each of the three

prominent data models in use: IMS (heirarchical), DBTG (network), and System R

(relational). Criteria were established and the relational model, augemented,

chosen as the UDM. Data model mapping issues were examined and included discussions

. on distributed information, redundant data, the support of Third Normal form, and

target model specific issues. Algorithms were developed to show the mappings be-

tween the target models and the UDM. The integration of these mappings were also

'- addressed. The syntax of a universal data definition language and data manipulation

*- language were described.- , p C;- - .....

!I

* linclasified
7288 SECURITY CLASSIFICATION Of THIS PAGE

tbS *. .* '..



FILMED

5-85

DTIC
7-.. . ." . . . .. - "" """ " "" ' " ' ' --a''" 

i)

. .. ' 
-

" " '' ." . "" . . ,4 - , • ... , - ' a,


